
FSA Modernization Partner
United States Department of Education

Federal Student Aid

EAI Release 3.0

Build and Test Report

Task Order #80

Deliverable #80.1.3

September 6, 2002

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI RELEASE 3.0

BUILD AND TEST REPORT

9/6/02 80.1.3 2

Table of Contents
1 EXECUTIVE SUMMARY... 3

1.1 OBJECTIVES ... 3
1.2 APPROACH ... 3
1.3 DESCRIPTION OF SECTIONS ... 4
1.4 SCOPE .. 5
1.5 INTENDED AUDIENCE ... 5

2 EAI COMPONENT BUILD... 6
2.1 FARS RETIREMENT DLSS – CMDM INTERFACE DESIGN DESCRIPTION 6
2.2 FARS RETIREMENT FMS – CMDM INTERFACE DESIGN DESCRIPTION 7
2.3 FINANCIAL PARTNER DATA MART PEPS – FPDM INTERFACE DESIGN DESCRIPTION 9
2.4 FINANCIAL PARTNER DATA MART NSLDS – FPDM INTERFACE DESIGN DESCRIPTION 10
2.5 ECAMPUS BASED PEPS - ECB DESIGN DESCRIPTION... 12
2.6 ECAMPUS BASED ECB - FMS INTERFACE DESIGN DESCRIPTION .. 14
2.7 COD INTERFACES .. 16

3 EAI TEST METHODOLOGY..52
3.1 INTERFACE TESTING PROCESS... 52

4 EAI COMPONENT TESTS ..56
4.1 FARS RETIREMENT DLSS – CMDM INTERFACE - BATCH .. 56
4.2 FARS RETIREMENT FMS – CMDM INTERFACE - BATCH .. 57
4.3 FINANCIAL PARTNER DATA MART PEPS – FPDM INTERFACE - BATCH 58
4.4 FINANCIAL PARTNER DATA MART NSLDS – FPDM INTERFACE - BATCH................................ 59
4.5 ECAMPUS BASED PEPS - ECB INTERFACE - BATCH... 60
4.6 ECAMPUS BASED ECB - FMS INTERFACE - BATCH.. 61
4.7 COD INTERFACES .. 62

5 SOURCE CODE FOR NEW ADAPTERS ...93

6 APPENDICES ...94

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 3

1 EXECUTIVE SUMMARY
Enterprise Application Integration (EAI) is a key component of FSA’s Modernization Program.
It is a technology that supports integration of data, systems, applications, and business processes
across the FSA enterprise. EAI does this by creating a central communication infrastructure
called the “EAI Bus”. The EAI Bus consists of a scalable, extensible architecture comprised of
two clustered servers, which form a “hub”, thereby supporting architecture across the systems
using the EAI Bus.

In order for FSA’s systems and applications to use the services provided by EAI, the EAI team
works with the client team to design, build, test, and deploy interfaces. These interfaces enable
transportation, translation, formatting, and routing of messages.

This report describes:

§ The interface architecture

§ The test procedures for interfaces migrated to the production environment during
Release 3.0 of EAI.

For mapping between the proposed work for Release 3.0 and this deliverable, please refer to
Appendix A.

1.1 Objectives
This report documents the build and test procedures and results for EAI Release 3.0 interfaces in
order to provide FSA managers, application teams and other stakeholders with a reference guide.

The tests outlined in this report are based on the functional scenarios developed to validate the
previously designed MQSeries Messaging and Transformation activities.

1.2 Approach
These steps were followed to build and test interfaces:

1. EAI works with application teams to gather, build, and test requirements.

2. Create an Interface Control Document (ICD) from the requirements. This describes how
to build an interface and describes testing.

3. Develop a test plan.

4. Execute the test plan.

5. Record test results.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 4

1.3 Description of Sections
This deliverable is divided into the following sections:

• Section 1 – Executive Summary

 The Executive Summary provides an introduction and overview of the EAI Build and Test
Report.

• Section 2 – EAI Component Build
This section contains design and build documentation for interfaces deployed to the
production environment in EAI Release 3.0.

• Section 3 – EAI Test Methodology
 The EAI Test Methodology focuses on the validation of the architectural design of the

Release 3.0 EAI Core Architecture. The test scenario descriptions will provide the objective
and an overview of the test to be performed, function(s) exercised, and any other pertinent
aspects of the test scenario. Test scenario inputs, expected results, and acceptance criteria are
discussed.

• Section 4 – EAI Component Tests
The EAI Component Tests document the detailed component test plan for each legacy
system. Diagrams are used throughout this section to explain the flow of data between the
different EAI components.

• Section 5 – Source Code for New Adapters

This section addresses the executive summary document statement that the Build and Test
report “Provides the source code for new adapters”.

• Appendices A-L

Appendices are included in this deliverable to provide detailed documentation. These
appendices are referenced throughout the document.

Appendix A sets the context for this deliverable with regard to all EAI Release 3.0
deliverables. Appendices B-K include assembly test conditions. Appendix L includes a
timeline for EAI Release 3.0.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 5

1.4 Scope
This document captures test results from Assembly Tests performed by the EAI team. The test
results in this deliverable are for interfaces built and tested during EAI Release 3.0. EAI shares
testing responsibilities with the application teams listed below. Application teams are responsible
for the following tests:

• User Acceptance Testing (UAT)

• Inter-Systems Testing (IST)

• Schools Testing

• Operational Readiness Testing (ORT)

• Performance Testing

MQSeries messaging and transformation activities were developed for the following Release 3.0
FSA systems:

• Common Origination and Disbursement (COD)

• Central Processing System (CPS)

• Direct Loan Servicing System (DLSS)

• Direct Loan Origination System (DLOS)

• Electronic Campus Based System (eCBS)

• Financial Accounting and Reporting System (FARS)

• Financial Partner Data Mart (FP Data Mart)

• Financial Management System (FMS)

• LO Web System (LO Web)

• National Student Loan Data System (NSLDS)

• Post-Secondary Education Participants System (PEPS)

• Student Aid Internet Gateway (SAIG/bTrade)

The Build portion of this document ensures that all required components defined in Release 3.0 of
the EAI Core Architecture are installed, configured, and operational.

The Test portion ensures that the actual outputs produced conform to the expected outputs as
defined by each test scenario.

Appendix L displays the Assembly Test schedule for EAI Release 3.0.

1.5 Intended Audience
The EAI Build and Test Report is a reference document for application teams and FSA.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 6

2 EAI COMPONENT BUILD
This section contains design descriptions for interfaces deployed to the production environment
during EAI Release 3.0. The EAI team captured detailed design information in two documents:
Interface Control Documents (ICD) and Internal Interface Documents (IID). The ICD describes
interface requirements and functions as an interface agreement between the EAI team and
Application team. The IID is used internally and provides detailed design information required
for interface development. Due to the large volume of design documentation, the ICDs and IIDs
have not been included in this deliverable, but are available upon request. The requirements
information and the following diagrams have been extracted from ICD’s and IIDs respectively.
The following sections contain the design diagrams and descriptions summarizing the application
interfaces that were designed, developed, tested, installed, configured, and deployed by the EAI
team.

Adapter source code was developed during EAI Release 3.0 by the EAI team. For further
information on source code, please see section 5 of this deliverable.

2.1 FARS Retirement DLSS – CMDM Interface Design Description
The sample function selected for the DLSS to CMDM interface validates the ability to send
DLSS data from the send script to the CMDM system. Once the source file is completed (process
is done writing to it), Data Integrator moves the flat file from DLSS to the appropriate destination
location in the CMDM system via MQSeries queues and channels.

The figure below describes the message flow for the batch DLSS to CMDM interface.

The flow of a bulk file from DLSS to CMDM, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. An Open VMS step is called to Data Integrator sender adapter to initiate transfer of the
file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (DLSST1) on DLSS moves the message to the specified XMIT queue (EAID1).

CMDM
Sun Solaris UNIX

DLSS
Open VMS

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

CMDM
Sun Solaris UNIX

DLSS
Open VMS

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 7

4. The message is transmitted directly to the destination Receiver (Queue Manager
WAST1). If the Receiver is on a remote queue manager (in this case), the message
destination is resolved to a transmission queue or set of transmission queues (WAST1.B)
and appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to CMDM.

Files

The following input files were defined on the DLSS for access by the EAI Core test application in
execution of this test scenario:

Filenames Function

MIS_LOANS.txt MIS Loads File

BORROWERS.txt Borrowers File

FICE_SCHOOL_CODES.txt FICE School File

2.2 FARS Retirement FMS – CMDM Interface Design Description
The sample function selected for the FMS to CMDM interface validates the ability to send DLSS
data from the send script to the CMDM system. Once the source file is completed (process is
done writing to it), Data Integrator will move the flat file from FMS to the appropriate destination
location in the CMDM system via MQSeries queues and channels.

The figure below describes the message flow for the batch FMS to CMDM interface.

CMDM
Sun Solaris UNIX

FMS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

CMDM
Sun Solaris UNIX

FMS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 8

The flow of a bulk file from FMS to CMDM, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. A script is called to Data Integrator sender adapter to initiate transfer of the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (FMST1) on FMS moves the message to the specified XMIT queue (EAID1).

4. The message is transmitted directly to the destination Receiver (Queue Manager
WAST1). If the Receiver is on a remote queue manager (in this case), the message
destination is resolved to a transmission queue or set of transmission queues (WAST1.B)
and appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to CMDM.

Files

The following input files were defined on the FMS for access by the EAI Core test application in
execution of this test scenario:

Filenames Function

cmdm_if010 IF10 File

cmdm_if020 IF20 File

cmdm_grec G Record File

cmdm_manual Manual Transaction File

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 9

2.3 Financial Partner Data Mart PEPS – FPDM Interface Design Description
The sample function selected for the PEPS to FPDM interface validates the ability to send PEPS
data from the send script to the FPDM system. Once the source file is completed (process is done
writing to it), Data Integrator will move the flat file from PEPS to the appropriate destination
location in the FPDM system. The figure below describes the message flow for the batch PEPS to
FPDM interface.

The flow of a bulk file from PEPS to FPDM, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. A script is called to Data Integrator sender adapter to initiate transfer of the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (PEPSI1) on PEPS moves the message to the specified XMIT queue (EAII2).

4. The message is transmitted directly to the destination Receiver (Queue Manager FPDMI).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (FDPMI.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and then submits an operational
reply to the originating Manager.

8. The source file is deleted on a successful file transfer to FPDM.

Files

The following input files were defined on the PEPS for access by the EAI Core test application in
execution of this test scenario:

FPDM
Sun Solaris UNIX

PEPS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

FPDM
Sun Solaris UNIX

PEPS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 10

Filenames Function

f_lndr_audit.txt PEPS Extract containing audit information by lender

f_lndr_audit_dfcncy.txt PEPS Extract containing audit deficiency and payment
information by lender

f_lndr_pgm_review.txt PEPS Extract containing program review information by
lender

f_lndr_pgm_review_dfcncy.txt PEPS Extract containing program review deficiency and
payment information by lender

f_closed_sch.txt PEPS Extract containing information on closed schools

2.4 Financial Partner Data Mart NSLDS – FPDM Interface Design Description
The sample function selected for the NSLDS to FPDM interface validates the ability to send
NSLDS data from the send script to the FPDM system. Once the source file is completed
(process is done writing to it), Data Integrator will move the flat file from NSLDS to the
appropriate destination location in the FPDM system via MQSeries queues and channels.

The figure below describes the message flow for the batch NSLDS to FPDM interface.

The flow of a bulk file from NSLDS to FPDM, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. A script is called to Data Integrator sender adapter to initiate transfer of the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (NPD1) on NSLDS moves the message to the specified XMIT queue (EAII2).

4. The message is transmitted directly to the destination Receiver (Queue Manager FPDMI).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (FDPMI.B) and
appropriately transmitted via the MQSeries message channel agent.

FPDM
Sun Solaris UNIX

NSLDS
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

FPDM
Sun Solaris UNIX

NSLDS
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 11

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to FPDM.

Files

The following input files have been defined on the NSLDS for access by the EAI Core test
application in execution of this test scenario:

Filenames Function

dmffeloan.txt NSLDS extract containing portfolio information and market share by
lender/guarantee agency

dmclaim.txt NSLDS extract containing closed school and false certification claims by
guarantee agency

dmvfa.txt NSLDS extract containing VFA performance measures by guarantee
agency

dmlenderf.txt NSLDS extract containing cohort default rate by lender

dmgasum.txt NSLDS extract containing aggregate descriptor and dollar amount by
guarantee agency

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 12

2.5 eCampus Based PEPS - eCB Design Description

The sample function selected for the PEPS to eCB interface validates the ability to send PEPS
school data using the send script to the eCB system. Once the source data is completely written
to the file system, the Data Integrator dirmon process initiates the move of the flat file from PEPS
to the appropriate destination location on the EAI bus via MQSeries queues and channels. After
the file is successfully written to the bus, a script running on the bus initiates the move of the flat
file to the appropriate destination location on the eCB system.

The figure below describes the message flow for the batch PEPS to eCB interface.

The flow of a bulk file from PEPS to eCB via Data Integrator and MQSeries queues is as follows:

1. A file is created in a specified directory.

2. The dirmon process uses the Data Integrator sender adapter to initiate transfer of the file.

3. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (PEPSI1) on PEPS moves the message to the specified XMIT queue.

4. The message is transmitted to the Receiver (EAI Queue Manager EAII2). If the Receiver
is on a remote queue manager (in this case), the message destination is resolved to a
transmission queue or set of transmission queues (EAII2.B) and appropriately transmitted
via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits and operational
reply to the originating Manager.

8. The source file is deleted on a successful file transfer to the EAI bus.

eCB
Sun Server

PEPS EAI BUS SERVER
Sun Server

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series
Data Integrator

MQ
Queue

File

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

MQ
Queue

MQ
Queue

File

FINISH

MQ Series

Data Integrator

MQ Series

Data Integrator

DI splits file to
MQ messages
DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
eCB processes

File.

DI reassembles
MQ messages

To a file.
eCB processes

File.

HP Server

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 13

9. Upon successful file transfer to the bus, Data Integrator calls a script to initiate transfer of
the file to eCB.

10. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (EAIP2) on the EAI bus moves the message to the specified XMIT queue.

11. The message is transmitted to the Receiver (eCB Queue Manager ECBSI2). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (ECBSI2.B) and appropriately
transmitted via the MQSeries message channel agent.

12. The Sender replies to the originating Manager, indicating that the file has been submitted.

13. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

14. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

15. Upon successful file transfer to eCB, Data Integrator calls a post processor script to
handle the school file.

Files

The following input files have been defined on PEPS for access by the EAI Core test application
in execution of this test scenario:

Filenames Function

schfile_extract_daily_yyyymmdd.Z Compressed PEPS school data file

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 14

2.6 eCampus Based eCB - FMS Interface Design Description
The sample function selected for the eCB to FMS interface validates the ability to send eCB
financial data using the send script to the FMS system. Once the source data is completely
written to the file system, Data Integrator will initiate the move of the flat file from eCB to the
appropriate destination location on the EAI bus via MQSeries queues and channels. If the file is
of certain type, MQSeries Integrator (MQSI) will transform the data in the file into SQL
statements and the data will then be loaded into FMS data tables. All other file types will simply
pass through the EAI bus and will be directly transmitted to the destination location on the FMS
system.

The figure below describes the message flow for the batch eCB to FMS interface.

The flow of a bulk file from eCB to FMS via Data Integrator and MQSeries queues is as follows:

1. A file is created in a specified directory.

2. A script is called to Data Integrator sender adapter to initiate transfer of the file.

3. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (ECBSI2) on eCB moves the message to the specified XMIT queue.

4. The message is transmitted to the Receiver (EAI Queue Manager EAII2). If the Receiver
is on a remote queue manager (in this case), the message destination is resolved to a
transmission queue or set of transmission queues (EAII2.B) and appropriately transmitted
via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

z

FMS
HP Server

eCB EAI BUS SERVER
Sun Server

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series
Data Integrator

MQ
Queue

File

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.

MQ
Queue

MQ
Queue

File

FINISH

MQ Series

Data Integrator

MQ Series

Data Integrator

DI splits file to
MQ messages
DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
eCB processes

File.

DI reassembles
MQ messages

To a file.
eCB processes

File.

Sun Server

MQ Series Integrator

MQSIMQ
Queue

MQ
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQSI will transform the file data
into SQL statements

MQSI will transform the file data
into SQL statements

FMS data
tables

SQL statements will
be executed and data will
be loaded into FMS tables

A

BEach file will either
follow path A or
path B, depending
on the file type

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 15

 If the file is not of type ‘unpaid teacher cancellation liabilities’ (UTCL), it will traverse
along path A.

7A.The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager. Because the file will only pass through the EAI bus, Data
Integrator continues to transfer the file to the destination.

8A.The EAI bus sender adapter splits the file into MQ messages, and the source (local)
Queue Manager (EAII2) on eCB moves the message to the specified XMIT queue.

9A.The message is transmitted to the Receiver (FMS Queue Manager FMSI1). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (FMSI1.B) and appropriately
transmitted via the MQSeries message channel agent.

10A. The Sender replies to the originating Manager, indicating that the file has been
submitted.

11A. The Receiver adapter receives data from MQSeries to create the target data. The
receiver accepts a data transfer request and processes the inbound data from its data
queues.

12A. The Receiver reassembles the MQ message to a flat file and submits an operational
reply to the originating Manager.

13A. If the file is of type ‘unpaid teacher cancellation liabilities’ (UTCL), it will traverse
along path B.

7B. Using Data Integrator, the Receiver adapter transforms the file into one MQ message and
initiates an MQSI message flow. An operational reply is submitted to the originating
Manager.

8B. MQSI transforms each line of the file into an SQL statement and passes the SQL
statement as a message to a queue.

9B. Using a custom Java component, the SQL message is executed against the FMS database
and the data is loaded into appropriate tables.

Files

The following input files were defined on eCB for access by the EAI Core test application in
execution of this test scenario:

Filenames Function

expmmddyyyy.txt FISAP expenditures test file

pbsmmddyyyy.txt Perkins Balance Sheet test file

utclmmddyyyy.txt Unpaid Teacher Cancellation Liabilities test file

mmddyyyy.obl, mmddyyyy.obp FSEOG/FWS/Perkins Award obligations and
adjustments test file

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 16

2.7 COD Interfaces

2.7.1 COD Interfaces Summary

COD interfaces via the EAI Bus to the following Trading Partners: SAIG, DLSS, NSLDS, CPS,
PEPS, FMS, and eMPN. The EAI Bus transports files to/from Schools, DLSS, NSLDS, CPS,
and PEPS to/from COD via MQ Series and the Data Integrator file transfer utility. The EAI Bus
also transports MQ messages to/from FMS and eMPN to/from COD. The COD EAI Interfaces
team will test the above interfaces between the EAI Bus, Trading Partners, and COD to ensure all
files and MQ messages are delivered once and only once. The COD EAI Interfaces team tested
the custom components (listed in the COD EAI Interfaces Custom Components) that manipulate
the data that is delivered by the bus.

A common logging utility was used for every interface where data passed through
transformation/custom Java adapters. The detailed test conditions for the common logging utility
are located in Appendix K.

EAI Bus

School
Data

System
(PEPS)

Application
Processing

System
(CPS)

P-Note
Imaging

eMPN/
LoWeb

Financial
Mgt.

System
(FMS)

Loan
Servicing
System
(DLSS)

Student
Data

Storage
(NSLDS)

COD
Base App

LoBatch

The interfaces
noted with the
dotted arrows

will not be
tested by the
DC Mod Ptr.

team

SAIG File
Transfer

File
Transfer

File
Transfer

File
Transfer

File
Transfer

MQ
Messages

MQ
Messages

File
Transfer

& MQ
messages

FTP

Socket

Socket

Schools

Internet

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 17

2.7.2 COD to CPS Interface Overview

2.7.2.1 COD to CPS Overview
All student application information is sent as a Free Application for Student Aid (FAFSA) to the
Central Processing System (CPS). CPS is a mainframe application that edits the application data
and performs matches against INS, SSA, VA, Selective Service, and NSLDS data to determine
student eligibility. Once the data has been validated, CPS calculates the Expected Family
Contribution (EFC) and generates the Institutional Student Information Report (ISIR) for the
schools and state agencies, and the Student Aid Report (SAR) for the student. The ISIR and SAR
contain essentially the same data, but in different formats.

COD needs a portion of the FAFSA information to process Pell and Direct Loan awards and
disbursements. This information is the Abbreviated Application Record, plus its header and
trailer.

CPS provides COD with data about applicants for loans and grants via the Abbreviated Applicant
Record. COD provides CPS with updated School Data.

Figure 1: COD – CPS Interfaces

NOTE: EAI Bus has been abstracted out

2.7.2.2 Abbreviated Applicant File Detailed Design Description
The sample function selected for the Abbreviated Applicant File interface validates the ability to
send CPS data from the send script to the COD system. Once the source file is completed
(process is done writing to it), Data Integrator moves the flat file from CPS to the appropriate
destination location in the COD system via MQSeries queues and channels.

COD
OS/390 Mainframe

CPS
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

COD
OS/390 Mainframe

CPS
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

Central
Processing

System
(CPS)

Common
Origination and
Disbursement

(COD)

Abbreviated Applicant File

Pell Institution Universe File

Pell Recipient File

Central
Processing

System
(CPS)

Common
Origination and
Disbursement

(COD)

Abbreviated Applicant File

Pell Institution Universe File

Pell Recipient File

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 18

The figure below describes the message flow for the Abbreviated Applicant File interface.

The flow of a bulk file from CPS to COD, via Data Integrator and MQSeries queues is as follows:

1. A file is created in a specified directory.

2. A JCL is called to Data Integrator sender adapter to initiate transfer of the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (QCT1) on CPS moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits and operational
reply to the originating Manager.

8. Post-Processing is kicked off upon receipt of file on COD.

9. The source file is deleted on a successful file transfer to COD.

2.7.2.3 Pell Institution Universe File Detailed Design Description
The sample function selected for the Pell Institution Universe File interface validates the ability to
send COD data from the send script to the CPS system. Once the source file is completed
(process is done writing to it), Data Integrator moves the flat file from COD to the appropriate
destination location in the CPS system via MQSeries queues and channels.

The figure below describes the message flow for the Pell Institution Universe File interface.

CPS
OS/390 Mainframe

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

CPS
OS/390 Mainframe

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 19

The flow of a bulk file from COD to CPS, via Data Integrator and MQSeries queues is as follows:

1. A file is created in a specified directory.

2. A JCL is called to Data Integrator sender adapter to initiate transfer of the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (VD0Q) on COD moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager QCT1).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (QCT1.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. Post-Processing is kicked off upon receipt of file on CPS.

9. The source file is deleted on a successful file transfer to CPS.

2.7.2.4 Pell Recipient File Detailed Design Description
The sample function selected for the Pell Recipient File interface validates the ability to send
COD data from the send script to the CPS system. Once the source file is completed (process is
done writing to it), Data Integrator moves the flat file from COD to the appropriate destination
location in the CPS system via MQSeries queues and channels.

The figure below describes the message flow for the Pell Recipient File interface.

CPS
OS/390 Mainframe

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

CPS
OS/390 Mainframe

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 20

The flow of a bulk file from COD to CPS, via Data Integrator and MQSeries queues is as follows:

1. A file is created in a specified directory.

2. A JCL is called to Data Integrator sender adapter to initiate transfer of the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (VD0Q) on COD moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager QCT1).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (QCT1.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. Post-Processing is kicked off upon receipt of file on CPS.

9. The source file is deleted on a successful file transfer to CPS.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 21

2.7.3 COD to DLOS Interface Overview
The Direct Loan Origination System (DLOS) is a single application responsible for the
administration of the origination and disbursement of Direct Loans. DLOS is comprised of
several components: Electronic Master Promissory Note (eMPN), Loan Origination Website (LO
Web), Direct Loan Origination System (DLOS) Batch, and P-Note Imaging System (Imaging).
COD requires interfaces to all of these components, some of which will be enduring and others of
which will be retired.

The eMPN component provides potential borrowers with the ability to complete an application
for and obtain a master promissory note (MPN) for Direct Loans via the public internet.
Beginning in AY 02-03, parent borrowers will be able to apply for PLUS MPNs on the eMPN
website. In AY02-03, COD will be processing all PLUS loans and will require the PLUS eMPN

information generated by the eMPN component and the ability to validate the existence of an
PLUS loan award for potential borrowers.

The LO Web component provides access to the DLOS application for school users. School users
currently have the capability to perform credit checks for potential parent borrowers from the
website. COD will be performing all credit checks for AY 02-03 and an interface between the
two systems will be required to continue this functionality until the LO Web component is retired.

DLOS Batch is the backend-processing component for the DLOS application and handles the
linking of subsidized and unsubsidized Stafford loans for AY 02-03. COD has interfaces to

LOWEB
Server

DLOS Batch

Common
Origination and
Disbursement

(COD)

PLUS MPN Record

MQ Series

FTP or Socket

Key

Borrower Validation & MPN ID Number
Request/Response

LO Web & DLOS Credit Checks

P-Note Link Request

PLUS Endorser Record

Date Change Payment Trigger

DLOS Credit
Checks

Unsolicited MPN and Link Response

MPN Status Change

Endorser
Data

Imaging
Server

MPN Data

LOWEB
Server

DLOS Batch

Common
Origination and
Disbursement

(COD)

PLUS MPN Record

MQ Series

FTP or Socket

Key

Borrower Validation & MPN ID Number
Request/Response

LO Web & DLOS Credit Checks

P-Note Link Request

PLUS Endorser Record

Date Change Payment Trigger

DLOS Credit
Checks

Unsolicited MPN and Link Response

MPN Status Change

Endorser
Data

Imaging
Server

MPN Data

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 22

request linking information and updates from the DLOS Batch component. Additionally, DLOS
Batch handles prior year PLUS loans and has the ability to request credit check information from
COD. This has been accomplished by passing the requests to the LO Web machine and using the
same credit check interface to COD.

The P-Note Imaging component is responsible for imaging paper master promissory notes and
endorser addendums. COD requires the MPN information for PLUS loans and the endorser
addendum information.

Figure 2 presents the interfaces between the DLOS and COD. Additional information may be

found in the following paragraphs and in the individual ICD’s.

Figure 2: COD – DLOS Interfaces

NOTE: EAI Bus has been abstracted out

2.7.3.1 PLUS MPN Record Detailed Design Description
The sample function selected for the PLUS MPN Record interface validated the ability to send
LOWEB data to the COD system in real time. Once the LOWEB data is placed on the queue, the
channel moves the message from the LOWEB queue to the COD queue.

The figure below describes the message flow for the PLUS MPN Record interface.

The flow of a transactional real time message from LOWEB to COD, via MQSeries queue and
channel is as follows:

1. A PLUS MPN Record is created.

2. The socket connection service on the LOWEB Server calls the LOWEB MQSeries Java
adapter to send the PLUS MPN Record.

3. The LOWEB MQSeries Java adapter places messages on the MQSeries Queue, and the
source (local) Queue Manager (LOWA1) on LOWEB moves the message to the specified
XMIT queue (EAIA1).

COD
OS/390 Mainframe

LOWEB
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on Queue
START

MQ
Queue

MQ Series

Java Adapter

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series

Utility

MQ Series

Data Retrieved from Queue

COD
OS/390 Mainframe

LOWEB
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on QueueData Placed on Queue
START

MQ
Queue

MQ Series

Java Adapter

MQ Series

Java Adapter

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISHFINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ Series

Utility

MQ Series

Utility

MQ Series

Data Retrieved from Queue

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 23

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the message has been
submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message and submits and operational reply to the
originating Manager.

8. Post-Processing is kicked off upon receipt of data on COD.

2.7.3.2 PLUS Endorser Record Detailed Design Description
The sample function selected for the PLUS Endorser Record interface validates the ability to send
LOWEB data to the COD system in real time. Once the LOWEB data is placed on the queue, the
channel will move the message from the LOWEB queue to the COD queue.

The figure below describes the message flow for the PLUS Endorser Record interface.

The flow of a transactional real time message from LOWEB to COD, via MQSeries queue and
channel is as follows:

1. A PLUS Endorser Record is created.

2. The socket connection service on the LOWEB Server calls the LOWEB MQSeries Java
adapter to send the PLUS Endorser Record.

3. The LOWEB MQSeries Java adapter places messages on the MQSeries Queue, and the
source (local) Queue Manager (LOWA1) on LOWEB moves the message to the specified
XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is

COD
OS/390 Mainframe

LOWEB
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on Queue
START

MQ
Queue

MQ Series

Java Adapter

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series

Utility

MQ Series

Data Retrieved from Queue

COD
OS/390 Mainframe

LOWEB
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on QueueData Placed on Queue
START

MQ
Queue

MQ Series

Java Adapter

MQ Series

Java Adapter

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISHFINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ Series

Utility

MQ Series

Utility

MQ Series

Data Retrieved from Queue

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 24

resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the message has been
submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message and submits and operational reply to the
originating Manager.

8. Post-Processing is kicked off upon receipt of data on COD.

2.7.3.3 Borrower Validation & MPN ID Number Request Detailed Design Description
The sample function selected for the Borrower Validation & MPN ID Number Request interface
validates the ability to send LOWEB data to the COD system in real time. Once the LOWEB
data is placed on the queue, the channel will move the message from the LOWEB queue to the
COD queue.

The figure below describes the message flow for the Borrower Validation & MPN ID Number
Request interface.

The flow of a transactional real time message from LOWEB to COD, via MQSeries queue and
channel is as follows:

1. A Borrower Validation & MPN ID Number Request is created.

2. The socket connection service on the LOWEB Server calls the LOWEB MQSeries Java
adapter to send the Borrower Validation & MPN ID Number Request.

3. The LOWEB MQSeries Java adapter places messages on the MQSeries Queue, and the
source (local) Queue Manager (LOWA1) on LOWEB moves the message to the specified
XMIT queue (EAIA1).

COD
OS/390 Mainframe

LOWEB
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on Queue
START

MQ
Queue

MQ Series

Java Adapter

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series

Utility

MQ Series

Data Retrieved from Queue

COD
OS/390 Mainframe

LOWEB
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on QueueData Placed on Queue
START

MQ
Queue

MQ Series

Java Adapter

MQ Series

Java Adapter

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISHFINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ Series

Utility

MQ Series

Utility

MQ Series

Data Retrieved from Queue

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 25

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the message has been
submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message and submits and operational reply to the
originating Manager.

8. Post-Processing is kicked off upon receipt of data on COD.

2.7.3.4 Borrower Validation & MPN ID Number Response Detailed Design Description
The sample function selected for the Borrower Validation & MPN ID Number Response interface
validates the ability to send COD data to the LOWEB system in real time. Once the COD data is
placed on the queue, the channel will move the message from the COD queue to the LOWEB
queue.

The figure below describes the message flow for the Borrower Validation & MPN ID Number
Response interface.

The flow of a transactional real time message from COD to LOWEB, via MQSeries queue and
channel is as follows:

1. A Borrower Validation & MPN ID Number Response is created.

2. The Utility on the COD server places messages on the MQSeries Queue, and the source
(local) Queue Manager (VD0Q) on COD moves the message to the specified XMIT
queue (EAIA1).

3. The message is transmitted directly to the destination Receiver (Queue Manager
LOWA1). If the Receiver is on a remote queue manager (in this case), the message
destination is resolved to a transmission queue or set of transmission queues (LOWA1.B)
and appropriately transmitted via the MQSeries message channel agent.

LOWEB
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on Queue
START

MQ
Queue

MQ Series

Utility

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series

Java Adapter

MQ Series

Data Retrieved from Queue

LOWEB
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on QueueData Placed on Queue
START

MQ
Queue

MQ Series

Utility

MQ Series

Utility

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISHFINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ Series

Java Adapter

MQ Series

Java Adapter

MQ Series

Data Retrieved from Queue

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 26

4. The Sender replies to the originating Manager, indicating that the message has been
submitted.

5. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

6. The Receiver reassembles the MQ message and submits and operational reply to the
originating Manager.

7. The LOWEB MQSeries Java adapter retrieves messages from the queue.

8. Post-Processing is kicked off upon receipt of data on LOWEB.

2.7.3.5 LO Web and DLOS Credit Checks Request Detailed Design Description
The sample function selected for the LO Web and DLOS Credit Checks Request interface
validates the ability to send LOWEB data to the COD system in real time. Once the LOWEB
data is placed on the queue, the channel moves the message from the LOWEB queue to the COD
queue.

The figure below describes the message flow for the LO Web and DLOS Credit Checks Request
interface.

The flow of a transactional real time message from LOWEB to COD, via MQSeries queue and
channel is as follows:

1. A LO Web and DLOS Credit Checks Request is created.

2. The socket connection service on the LOWEB Server calls the LOWEB MQSeries Java
adapter to send the LO Web and DLOS Credit Checks Request.

3. The LOWEB MQSeries Java adapter places messages on the MQSeries Queue, and the
source (local) Queue Manager (LOWA1) on LOWEB moves the message to the specified
XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is

COD
OS/390 Mainframe

LOWEB
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on Queue
START

MQ
Queue

MQ Series

Java Adapter

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series

Utility

MQ Series

Data Retrieved from Queue

COD
OS/390 Mainframe

LOWEB
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on QueueData Placed on Queue
START

MQ
Queue

MQ Series

Java Adapter

MQ Series

Java Adapter

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISHFINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ Series

Utility

MQ Series

Utility

MQ Series

Data Retrieved from Queue

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 27

resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the message has been
submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message and submits and operational reply to the
originating Manager.

8. Post-Processing is kicked off upon receipt of data on COD.

2.7.3.6 LO Web and DLOS Credit Checks Response Detailed Design Description
The sample function selected for the LO Web and DLOS Credit Checks Response interface
validates the ability to send COD data to the LOWEB system in real time. Once the COD data is
placed on the queue, the channel moves the message from the COD queue to the LOWEB queue.

The figure below describes the message flow for the LO Web and DLOS Credit Checks Response
interface.

The flow of a transactional real time message from COD to LOWEB, via MQSeries queue and
channel is as follows:

1. A LO Web and DLOS Credit Checks Response is created.

2. The Utility on the COD server places messages on the MQSeries Queue, and the source
(local) Queue Manager (VD0Q) on COD moves the message to the specified XMIT
queue (EAIA1).

3. The message is transmitted directly to the destination Receiver (Queue Manager
LOWA1). If the Receiver is on a remote queue manager (in this case), the message
destination is resolved to a transmission queue or set of transmission queues (LOWA1.B)
and appropriately transmitted via the MQSeries message channel agent.

4. The Sender replies to the originating Manager, indicating that the message has been
submitted.

LOWEB
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on Queue
START

MQ
Queue

MQ Series

Utility

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series

Java Adapter

MQ Series

Data Retrieved from Queue

LOWEB
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

Data Placed on QueueData Placed on Queue
START

MQ
Queue

MQ Series

Utility

MQ Series

Utility

XMIT
Queue

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ
Queue

FINISHFINISH

MQ Series
Channel
to move

Messages to
destination

MQ Series
Channel
to move

Messages to
destination

MQ Series

Java Adapter

MQ Series

Java Adapter

MQ Series

Data Retrieved from Queue

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 28

5. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

6. The Receiver reassembles the MQ message and submits and operational reply to the
originating Manager.

7. The LOWEB MQSeries Java adapter retrieves messages from the queue.

8. Post-Processing is kicked off upon receipt of data on LOWEB.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 29

2.7.4 COD to DLSS Interface Overview
The Direct Loan Servicing System (DLSS) maintains loan and borrower information. DLSS
tracks loans received for the life of the loan from the booking process through payment in full by
the borrower or until the loan is passed to the Debt Collection Service (defaulted loan).

DLSS provides COD with loan and borrower information via the DLSS Batch Feed.
Confirmations of COD-initiated transactions that took place since the last Disbursement
Confirmation File was sent to COD by DLSS are contained in the Disbursement Confirmations
Feed. Updates of DLSS-relevant information previously provided by COD to DLSS take place in
the Daily response feed.

Figure 3: COD – DLSS Interfaces

NOTE: EAI Bus has been abstracted out

2.7.4.1 DLSS Batch Feed Detailed Design Description
The sample function selected for the DLSS Batch Feed interface validates the ability to send
COD data from the send script to the DLSS system. Once the source file is completed (process is
done writing to it), Data Integrator will move the flat file from COD to the appropriate destination
location in the DLSS system via MQSeries queues and channels.

The figure below describes the message flow for the DLSS Batch Feed interface.

The flow of a bulk file from COD to DLSS, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

DLSS
Open VMS

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

DLSS
Open VMS

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

Direct Loan
Servicing
System
(DLSS)

Common
Origination and
Disbursement

(COD)

DLSS Batch Feed

DLSS Batch Response

Disbursement Confirmations (RDC’s)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 30

2. A JCL is called to Data Integrator sender adapter to initiate transfer of the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (VD0Q) on COD moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager
DLSST1). If the Receiver is on a remote queue manager (in this case), the message
destination is resolved to a transmission queue or set of transmission queues (DLSST1.B)
and appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to DLSS.

2.7.4.2 DLSS Batch Response Detailed Design Description
The sample function selected for the DLSS Batch Response interface validates the ability to send
DLSS data from the send script to the COD system. Once the source file is completed (process is
done writing to it), Data Integrator moves the flat file from DLSS to the appropriate destination
location in the COD system via MQSeries queues and channels.

The figure below describes the message flow for the DLSS Batch Response interface.

The flow of a bulk file from DLSS to COD, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. An Open VMS step is called to Data Integrator sender adapter to initiate transfer of the
file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (DLSST1) on DLSS moves the message to the specified XMIT queue (EAIA1).

COD
OS/390 Mainframe

DLSS
Open VMS

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

COD
OS/390 Mainframe

DLSS
Open VMS

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 31

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to COD.

2.7.4.3 Disbursement Confirmations Detailed Design Description
The sample function selected for the Disbursement Confirmations interface validates the ability to
send DLSS data from the send script to the COD system. Once the source file is completed
(process is done writing to it), Data Integrator moves the flat file from DLSS to the appropriate
destination location in the COD system via MQSeries queues and channels.

The figure below describes the message flow for the Disbursement Confirmations interface.

The flow of a bulk file from DLSS to COD, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. An Open VMS step is called to Data Integrator sender adapter to initiate transfer of the
file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (DLSST1) on DLSS moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is

COD
OS/390 Mainframe

DLSS
Open VMS

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

COD
OS/390 Mainframe

DLSS
Open VMS

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 32

resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to COD.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 33

2.7.5 COD to FMS Interface Overview
All financial transactions, the actual movement of funding authority, between Schools and FSA
are managed through the FSA Financial Management System. Schools will have the ability to
draw cash from Treasury through FMS draw down capability, or, if that capability is not yet in
place, through the Government Accounts Payable System (GAPS). The interface between COD
and FMS will be the same regardless of whether or not GAPS is involved in the funds
disbursement or processing.

FMS and COD share information in three categories: 1) Financial Transactions, 2) School
Information, and 3) Reconciliation and Balancing.

Figure 4: COD – FMS Interfaces

NOTE: EAI Bus has been abstracted out

2.7.5.1 Financial Transactions Input Detailed Design Description
The sample function selected for the Financial Transactions Input interface validates the ability to
send COD data to the FMS system in real time. Once the COD data is placed on the queue, the
channel moves the message from the COD queue to the FMS queue. On the EAI Bus, MQSI
transforms the messages into SQL statements and the data is loaded into FMS data tables.

SFA Financial
Management
System (FMS)

Common
Origination and
Disbursement

(COD)

Financial Requests

Financial Requests

School Information

School Information Responses

Reconciliation and Balancing Information

Reconciliation and Balancing Responses

Financial Responses

Financial Responses

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 34

The figure below describes the message flow for the Financial Transactions Input interface.

The flow of a transactional real time message from COD to FMS, via MQSeries queue and
channel is as follows:

1. A Financial Transaction is created.

2. The Sender adapter (COD Utility) converts the data into MQ messages, and the source
(local) Queue Manager (VD0Q) on COD moves the message to the specified XMIT
queue (EAIT1).

3. The message is transmitted directly to the destination Receiver (Queue Manager
FMST1). If the Receiver is on a remote queue manager (in this case), the message
destination is resolved to a transmission queue or set of transmission queues (FMST1.B)
and appropriately transmitted via the MQSeries message channel agent.

4. The Sender replies to the originating Manager, indicating that the file has been submitted.

5. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

6. The Receiver adapter transforms the data into one MQ message and initiates an MQSI
message flow. An operational reply is submitted to the originating Manager.

7. MQSI transforms each line of data into an SQL statement and passes the SQL statement
as a message to a queue.

8. Using a custom Java adapter, the SQL message is executed against the FMS Oracle
database and the data is loaded into the appropriate tables.

2.7.5.2 Financial Transactions Retrieval Detailed Design Description
The sample function selected for the Financial Transactions Retrieval interface validates the
ability to send FMS data to the COD system in real time. Once the FMS data is placed on the
queue, the channel moves the message from the FMS queue to the COD queue. On the EAI Bus,

FMS
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

START

MQ
Queue

FINISH
MQ Series
Channel to

move message
to destination

MQSI will transform the
data Into SQL statements

MQSIMQ
Queue

MQ
Queue

FMS data
tables

SQL statements will
be executed and data will
be loaded into FMS tables

MQ Series

Utility

MQ Series

MQSI

Data Placed on Queue

MQ Series

Java Adapter

FMS
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

START

MQ
Queue

MQ
Queue

FINISHFINISH
MQ Series
Channel to

move message
to destination

MQ Series
Channel to

move message
to destination

MQSI will transform the
data Into SQL statements
MQSI will transform the

data Into SQL statements

MQSIMQSIMQ
Queue

MQ
Queue

MQ
Queue

MQ
Queue

FMS data
tables

FMS data
tables

SQL statements will
be executed and data will
be loaded into FMS tables

SQL statements will
be executed and data will
be loaded into FMS tables

MQ Series

Utility

MQ Series

Utility

MQ Series

MQSI

MQ Series

MQSI

Data Placed on QueueData Placed on Queue

MQ Series

Java Adapter

MQ Series

Java Adapter

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 35

MQSI transforms the SQL queries into COD readable messages and COD Utility retrieves the
messages.

The figure below describes the message flow for the Financial Transactions Retrieval interface.

The flow of a transactional real time message from FMS to COD, via MQSeries queue and
channel is as follows:

1. A Financial Transaction Retrieval is requested as SQL queries.

2. The Sender adapter (FMS Java adaptor) converts the data into MQ messages, and the
source (local) Queue Manager (FMST1) on FMS moves the message to the specified
XMIT queue (EAIT1).

3. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

4. The Sender replies to the originating Manager, indicating that the file has been submitted.

5. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

6. The Receiver adapter transforms the data into one MQ message and initiates an MQSI
message flow. An operational reply is submitted to the originating Manager.

7. MQSI transforms each line of data from an SQL statement to a COD readable message
and passes the message to a queue.

8. The COD Utility retrieves the message off the queue and processes the message.

COD
OS/390 IBM Mainframe

FMS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

START

MQ
Queue

FINISH

MQ Series
Channel to

move message
to destination

MQSI will transform the
data Into SQL statements

MQSIMQ
Queue

MQ
QueueFMS data

tables

SQL queries will
be executed and data will be

retrieved from FMS tables

MQ Series

Java Adapter

MQ Series

MQSI

Data retrieve from Queue

MQ Series

Utility

COD
OS/390 IBM Mainframe

FMS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

START

MQ
Queue
MQ

Queue

FINISHFINISH

MQ Series
Channel to

move message
to destination

MQ Series
Channel to

move message
to destination

MQSI will transform the
data Into SQL statements
MQSI will transform the

data Into SQL statements

MQSIMQSIMQ
Queue

MQ
Queue

MQ
Queue

MQ
QueueFMS data

tables
FMS data

tables

SQL queries will
be executed and data will be

retrieved from FMS tables

SQL queries will
be executed and data will be

retrieved from FMS tables

MQ Series

Java Adapter

MQ Series

Java Adapter

MQ Series

MQSI

MQ Series

MQSI

Data retrieve from QueueData retrieve from Queue

MQ Series

Utility

MQ Series

Utility

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 36

2.7.5.3 School Information Input Detailed Design Description
The sample function selected for the Financial Transactions Input interface validates the ability to
send COD data to the FMS system in real time. Once the COD data is placed on the queue, the
channel moves the message from the COD queue to the FMS queue. On the EAI Bus, MQSI
transforms the messages into SQL statements and the data is then loaded into FMS data tables.

The figure below describes the message flow for the School Information Input interface.

The flow of a transactional real time message from COD to FMS, via MQSeries queue and
channel is as follows:

1. A School Information is created.

2. The Sender adapter (COD Utility) converts the data into MQ messages, and the source
(local) Queue Manager (VD0Q) on COD moves the message to the specified XMIT
queue (EAIT1).

3. The message is transmitted directly to the destination Receiver (Queue Manager
FMST1). If the Receiver is on a remote queue manager (in this case), the message
destination is resolved to a transmission queue or set of transmission queues (FMST1.B)
and appropriately transmitted via the MQSeries message channel agent.

4. The Sender replies to the originating Manager, indicating that the file has been submitted.

5. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

6. The Receiver adapter transforms the data into one MQ message and initiates an MQSI
message flow. An operational reply is submitted to the originating Manager.

7. MQSI transforms each line of data into an SQL statement and passes the SQL statement
as a message to a queue.

8. Using a custom Java adapter, the SQL message is executed against the FMS Oracle
database and the data is loaded into the appropriate tables.

FMS
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

START

MQ
Queue

FINISH
MQ Series
Channel to

move message
to destination

MQSI will transform the
data Into SQL statements

MQSIMQ
Queue

MQ
Queue

FMS data
tables

SQL statements will
be executed and data will
be loaded into FMS tables

MQ Series

Utility

MQ Series

MQSI

Data Placed on Queue

MQ Series

Java Adapter

FMS
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

START

MQ
Queue

MQ
Queue

FINISHFINISH
MQ Series
Channel to

move message
to destination

MQ Series
Channel to

move message
to destination

MQSI will transform the
data Into SQL statements
MQSI will transform the

data Into SQL statements

MQSIMQSIMQ
Queue

MQ
Queue

MQ
Queue

MQ
Queue

FMS data
tables

FMS data
tables

SQL statements will
be executed and data will
be loaded into FMS tables

SQL statements will
be executed and data will
be loaded into FMS tables

MQ Series

Utility

MQ Series

Utility

MQ Series

MQSI

MQ Series

MQSI

Data Placed on QueueData Placed on Queue

MQ Series

Java Adapter

MQ Series

Java Adapter

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 37

2.7.5.4 School Information Retrieval Detailed Design Description
The sample function selected for the School Information Retrieval interface validates the ability
to send FMS data to the COD system in real time. Once the FMS data is placed on the queue, the
channel moves the message from the FMS queue to the COD queue. On the EAI Bus, MQSI
transforms the SQL queries into COD readable messages and COD Utility retrieves the messages.

The figure below describes the message flow for the School Information Retrieval interface.

The flow of a transactional real time message from FMS to COD, via MQSeries queue and
channel is as follows:

1. A School Information Retrieval is requested as SQL queries.

2. The Sender adapter (FMS Java adaptor) converts the data into MQ messages, and the
source (local) Queue Manager (FMST1) on FMS moves the message to the specified
XMIT queue (EAIT1).

3. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

4. The Sender replies to the originating Manager, indicating that the file has been submitted.

5. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

6. The Receiver adapter transforms the data into one MQ message and initiates an MQSI
message flow. An operational reply is submitted to the originating Manager.

7. MQSI transforms each line of data from an SQL statement to a COD readable message
and passes the message to a queue.

8. The COD Utility retrieves the message off the queue and processes the message.

COD
OS/390 IBM Mainframe

FMS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

START

MQ
Queue

FINISH

MQ Series
Channel to

move message
to destination

MQSI will transform the
data Into SQL statements

MQSIMQ
Queue

MQ
QueueFMS data

tables

SQL queries will
be executed and data will be

retrieved from FMS tables

MQ Series

Java Adapter

MQ Series

MQSI

Data retrieve from Queue

MQ Series

Utility

COD
OS/390 IBM Mainframe

FMS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

START

MQ
Queue
MQ

Queue

FINISHFINISH

MQ Series
Channel to

move message
to destination

MQ Series
Channel to

move message
to destination

MQSI will transform the
data Into SQL statements
MQSI will transform the

data Into SQL statements

MQSIMQSIMQ
Queue

MQ
Queue

MQ
Queue

MQ
QueueFMS data

tables
FMS data

tables

SQL queries will
be executed and data will be

retrieved from FMS tables

SQL queries will
be executed and data will be

retrieved from FMS tables

MQ Series

Java Adapter

MQ Series

Java Adapter

MQ Series

MQSI

MQ Series

MQSI

Data retrieve from QueueData retrieve from Queue

MQ Series

Utility

MQ Series

Utility

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 38

2.7.6 COD to NSLDS Interface Overview
The National Student Loan Data System (NSLDS) is a national database of loans and other
financial aid disbursed to students under Title IV of the Higher Education Act of 1964. It
supports the entire student aid community in a variety of operational and research functions for
improving the administration of Title IV aid programs. Enrolling in the NSLDS is required of all
institutions that participate in Title IV federal student financial aid programs. The NSLDS
includes data on the FFEL, Direct Loan, and Perkins Loan programs; on Pell awards and
disbursements; and on Pell and FSEOG over awards.

NSLDS receives data from multiple internal and external sources to the Department of Education,
and maintains the data in one integrated database. This data is available to many different system
users for administration, research support, policy analysis, and other management purposes.

To help schools determine if a student is in default or owes a repayment, the CPS matches
applications with the NSLDS database. Schools are responsible for reconciling all information
received about a student before disbursing aid. Therefore, schools are required to resolve any
conflicts between the NSLDS information and information the student has provided. For
example, if the NSLDS indicates that a student is not in default but the school has documentation
indicating that the student is in default, the school must resolve this conflict before disbursing
federal student aid.

COD provides NSLDS with data about Pell Grant disbursements and eligibility via the Pell
Recipient Information file. In return, NSLDS provides COD with errors related to that file. COD
will not send NSLDS loan disbursement processing and eligibility, as that information will be
sent to NSLDS from Loan Servicing (DLSS).

Figure 5: COD – NSLDS Interfaces

NOTE: EAI Bus has been abstracted out

2.7.6.1 Pell Recipient Information Detailed Design Description
The sample function selected for the Pell Recipient Information interface validates the ability to
send COD data from the send script to the NSLDS system. Once the source file is completed
(process is done writing to it), Data Integrator moves the flat file from COD to the appropriate
destination location in the NLSDS system via MQSeries queues and channels.

The figure below describes the message flow for the Pell Recipient Information Interface.

National
Student Loan
Data System

(NSLDS)

Common
Origination and
Disbursement

(COD)

Pell Recipient Information

Pell Recipient Data Errors

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 39

The flow of a bulk file from COD to NSLDS, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. A JCL is called to Data Integrator sender adapter to initiate transfer of the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (VD0Q) on COD moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager QNT1).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (QNT1.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. Post-Processing is kicked off upon receipt of file on NSLDS.

9. The source file is deleted on a successful file transfer to NSLDS.

2.7.6.2 Pell Recipient Data Errors Detailed Design Description

The sample function selected for the Pell Recipient Data Errors interface validates the ability to
send NSLDS data from the send script to the COD system. Once the source file is completed
(process is done writing to it), Data Integrator will move the flat file from NSLDS to the
appropriate destination location in the COD system via MQSeries queues and channels.

The figure below describes the message flow for the Pell Recipient Data Errors Interface.

NSLDS
OS/390 Mainframe

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

NSLDS
OS/390 Mainframe

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 40

The flow of a bulk file from NSLDS to COD, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. A JCL is called to Data Integrator sender adapter to initiate transfer of the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (QNT1) on NSLDS moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. Post-Processing is kicked off upon receipt of file on COD.

9. The source file is deleted on a successful file transfer to COD.

COD
OS/390 Mainframe

NSLDS
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

COD
OS/390 Mainframe

NSLDS
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 41

2.7.7 COD to PEPS Interface Overview
The Postsecondary Education Participants System (PEPS) is the Federal Student Aid (FSA)
management information system of all organizations that have a role in administering Student
Financial Aid and other Higher Education Act programs. PEPS maintains eligibility, certification,
demographic, review, audit and default rate data on all Schools, Lenders, and Guarantors
participating in the Title IV programs.

PEPS provides COD with data about Schools and School eligibility in the Daily Participants
Feed.

Figure 6: COD – PEPS Interface

NOTE: EAI Bus has been abstracted out

2.7.7.1 Daily Participants Feed Detailed Design Description
The sample function selected for the Daily Participants Feed interface validates the ability to send
PEPS data using the directory monitoring service to initiate the file transfer to COD. The EAI
team configured Data Integrator’s directory monitoring service to watch for the complete creation
of the Daily Participants Feed file in a specified directory. The directory monitoring process
looks at a specific directory for the creation or revision of any files that fit the naming pattern that
it has been configured to look for. Once the source file is completed (process is done writing to
it), Data Integrator will move the flat file from PEPS to the EAI Bus, extract the “delta” from the
Daily Participant file and move the PEPS “delta” file to the appropriate destination location in the
COD system via MQSeries queues and channels.

The figure below describes the message flow for the Daily Participants Feed interface.

The flow of a bulk file from PEPS to COD via Data Integrator and MQSeries queues is as
follows:

COD
OS/390 Mainframe

PEPS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue
MQ

Queue
File

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

MQ
Queue

MQ
Queue

File

FINISH

DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
COD processes

File.

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

COD
OS/390 Mainframe

PEPS
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue
MQ

Queue
File

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

MQ
Queue

MQ
Queue

File

FINISH

DI splits file to
MQ messages
DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
COD processes

File.

DI reassembles
MQ messages

To a file.
COD processes

File.

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

Postsecondary
Education
Participant

System (PEPS)

Common
Origination and
Disbursement

(COD)

Daily Participants Feed
Postsecondary

Education
Participant

System (PEPS)

Common
Origination and
Disbursement

(COD)

Daily Participants Feed

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 42

1. A file is created in a specified directory.

2. The dirmon process uses the Data Integrator sender adapter to initiate transfer of the file.

3. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (PEPST1) on PEPS moves the message to the specified XMIT queue.

4. The message is transmitted to the Receiver (EAI Queue Manager EAIA1). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (EAIA1.B) and appropriately
transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to the EAI bus.

9. Upon successful file transfer to the bus, Data Integrator calls a Java transformation
program to extract the PEPS “delta” file from the complete PEPS file.

10. Upon successful extract of the PEPS “delta” file, Data Integrator calls a script to initiate
transfer of the file to COD.

11. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (EAIA1) on the EAI bus moves the message to the specified XMIT queue.

12. The message is transmitted to the Receiver (COD Queue Manager VD0Q). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (VD0Q.B) and appropriately
transmitted via the MQSeries message channel agent.

13. The Sender replies to the originating Manager, indicating that the file has been submitted.

14. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

15. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

16. Upon successful file transfer to COD, Data Integrator calls a post processor script to
handle the Daily Participants Feed.

Files

The following input files have been defined on PEPS for access by the EAI Core test application
in execution of this test scenario:

Filenames Function

schfile_extract_daily_yyyymmdd.Z Compressed PEPS school data file

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 43

2.7.8 COD to SAIG Interface Overview
The SAIG Secure Portal writes the School information to the COD mailbox. This interface
enables the schools (via bTrade) to send and receive data to and from COD. Common Records
and Legacy Records sent from the schools are directly processed at COD. Common Records,
Common Record acknowledgements, and Common Record responses are XML based, whereas
Legacy Records are Legacy based. COD only sends out XML based Common Record
acknowledgements and responses to the EAI Bus. Common Record acknowledgements and
responses must be transformed before submitting to Common Record schools’ mailbox and
Legacy Record schools’ mailbox.

This interface allows COD to retrieve a batch of input records from SAIG. Files transported from
SAIG to COD include Common Record Files, Converted Pell and Direct Loan Legacy Files, and
a School Information File. Files transported from COD to SAIG include converted Legacy
Record Responses, Common Record Responses, and Reports.

Figure 7: COD – SAIG Interfaces

NOTE: EAI Bus has been abstracted out

2.7.8.1 Common Record Input Detailed Design Description
The sample function selected for the Common Record Input interface validates the ability to send
SAIG data from the send script to the COD system. Once the source file is completed (process is
done writing to it), Data Integrator will move the XML file from SAIG to the appropriate
destination location in the COD system via MQSeries queues and channels.

Student Aid
Intenet

Gateway
(SAIG)

Common
Origination and
Disbursement

(COD)

Common Record Schools Interface File

Legacy Record Schools Interface File

School Destination Information Feed
COD to Schools/SAIG Reports

Student Aid
Intenet

Gateway
(SAIG)

Common
Origination and
Disbursement

(COD)

Common Record Schools Interface File

Legacy Record Schools Interface File

School Destination Information Feed
COD to Schools/SAIG Reports

Common Record Schools Interface
File

Legacy Record Schools Interface File

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 44

The figure above describes the message flow for the Common Record Input Interface.

The flow of a bulk file from SAIG to COD, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. COD polls SAIG mailbox that calls Data Integrator sender adapter to initiate transfer of
the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (SAIGT1) on SAIG moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. Post-Processing is kicked off upon receipt of file on COD.

9. The source file is deleted on a successful file transfer to COD.

COD
OS/390 Mainframe

SAIG
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

COD
OS/390 Mainframe

SAIG
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 45

2.7.8.2 Common Record Acknowledgements and Responses Detailed Design Description
The sample function selected for the Common Record Acknowledgements and Responses
interface validates the ability to send COD acknowledgements and responses to the SAIG system
from the send scripts. Once the source file is completed (process is done writing to it), Data
Integrator moves the XML files to the appropriate destination location in the SAIG system via
MQSeries queues and channels.

The figures below describe the message flow for the Common Record Acknowledgements and
Responses interface.

The flow of a bulk file from COD to SAIG via Data Integrator and MQSeries queues is as
follows:

1. Once COD receives the Common Record file, COD creates a Common Record
Acknowledgement file in a specified directory. After COD processes the Common
Record file and validates its contents, COD creates a Common Record Response file in a
specified directory.

2. A JCL is called to Data Integrator sender adapter to initiate transfer of the file.

3. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (VD0Q1) on COD moves the message to the specified XMIT queue.

4. The message is transmitted to the Receiver (EAI Queue Manager EAIA1). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (EAIA1.B) and appropriately
transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to the EAI bus.

SAIG
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue
MQ

Queue
File

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

MQ
Queue

MQ
Queue

File

FINISH

DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
COD processes

File.

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

SAIG
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue
MQ

Queue
File

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

MQ
Queue

MQ
Queue

File

FINISH

DI splits file to
MQ messages
DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
COD processes

File.

DI reassembles
MQ messages

To a file.
COD processes

File.

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 46

9. Upon successful file transfer to the bus, Data Integrator calls a Java transformation
program to convert the Common Record Acknowledgement and Response files to XML
formatted files.

10. Upon successful conversion to Common Record files, Data Integrator calls a script to
initiate transfer of the files to the appropriate SAIG schools’ mailbox.

11. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (EAIA1) on the EAI bus moves the message to the specified XMIT queue.

12. The message is transmitted to the Receiver (SAIG Queue Manager SAIGT1). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (SAIGT1.B) and appropriately
transmitted via the MQSeries message channel agent.

13. The Sender replies to the originating Manager, indicating that the file has been submitted.

14. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

15. The Receiver reassembles the MQ message to a XML file and submits and operational
reply to the originating Manager.

16. Upon successful file transfer to SAIG, Data Integrator calls a post processor script to
handle the Common Record files.

2.7.8.3 Legacy Record Input Detailed Design Description
The sample function selected for the Legacy Record Input interface validates the ability to send
SAIG data from the send script to the COD system. Once the source file is completed (process is
done writing to it), Data Integrator moves the flat file from SAIG to the appropriate destination
location in the COD system via MQSeries queues and channels.

The figure below describes the message flow for the Legacy Record Input Interface.

The flow of a bulk file from SAIG to COD, via Data Integrator and MQSeries queues is as
follows:

COD
OS/390 Mainframe

SAIG
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

COD
OS/390 Mainframe

SAIG
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 47

1. A file is created in a specified directory.

2. COD polls SAIG mailbox that calls Data Integrator sender adapter to initiate transfer of
the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (SAIGT1) on SAIG moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. Post-Processing is kicked off upon receipt of file on COD.

9. The source file is deleted on a successful file transfer to COD.

2.7.8.4 Legacy Record Acknowledgements and Responses Detailed Design Description
The sample function selected for the Legacy Record Acknowledgements and Responses interface
validates the ability to send COD acknowledgements and responses to the SAIG system from the
send scripts. Once the source file is completed (process is done writing to it), Data Integrator will
move the XML files to the appropriate destination location in the SAIG system via MQSeries
queues and channels.

The figures below describe the message flow for the Legacy Record Acknowledgements and
Responses interface.

The flow of a bulk file from COD to SAIG via Data Integrator and MQSeries queues is as
follows:

SAIG
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue
MQ

Queue
File

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

MQ
Queue

MQ
Queue

File

FINISH

DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
COD processes

File.

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

SAIG
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue
MQ

Queue
File

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

MQ
Queue

MQ
Queue

File

FINISH

DI splits file to
MQ messages
DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
COD processes

File.

DI reassembles
MQ messages

To a file.
COD processes

File.

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 48

1. Once COD receives the Legacy Record file, COD creates a XML based Common Record
Acknowledgement file in a specified directory. After COD processes the Legacy Record
file and validates its contents, COD creates a XML based Common Record Response file
in a specified directory.

2. A JCL is called to Data Integrator sender adapter to initiate transfer of the file.

3. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (VD0Q1) on COD moves the message to the specified XMIT queue.

4. The message is transmitted to the Receiver (EAI Queue Manager EAIA1). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (EAIA1.B) and appropriately
transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to the EAI bus.

9. Upon successful file transfer to the bus, Data Integrator calls a Java transformation
program to convert the Common Record Acknowledgement and Response files to
Legacy formatted files.

10. Upon successful conversion to Legacy Record files, Data Integrator calls a script to
initiate transfer of the files to the appropriate SAIG schools’ mailbox.

11. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (EAIA1) on the EAI bus moves the message to the specified XMIT queue.

12. The message is transmitted to the Receiver (SAIG Queue Manager SAIGT1). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (SAIGT1.B) and appropriately
transmitted via the MQSeries message channel agent.

13. The Sender replies to the originating Manager, indicating that the file has been submitted.

14. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

15. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

16. Upon successful file transfer to SAIG, Data Integrator calls a post processor script to
handle the Legacy Record files.

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 49

2.7.8.5 COD-SAIG School Destination Information Feed Detailed Design Description
The sample function selected for the SAIG to COD interface validates the ability to send SAIG
data from the send script to the COD system. Once the source file is completed (process is done
writing to it), Data Integrator moves the flat file from SAIG to the appropriate destination
location in the COD system via MQSeries queues and channels.

The figure below describes the message flow for the School Destination Information Feed
Interface.

The flow of a bulk file from SAIG to COD, via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. COD polls SAIG mailbox that calls Data Integrator sender adapter to initiate transfer of
the file.

3. The Sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (SAIGT1) on SAIG moves the message to the specified XMIT queue (EAIA1).

4. The message is transmitted directly to the destination Receiver (Queue Manager VD0Q).
If the Receiver is on a remote queue manager (in this case), the message destination is
resolved to a transmission queue or set of transmission queues (VD0Q.B) and
appropriately transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. Post-Processing is kicked off upon receipt of file on COD.

9. The source file is deleted on a successful file transfer to COD.

COD
OS/390 Mainframe

SAIG
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

COD
OS/390 Mainframe

SAIG
HP-UX UNIX

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

XMIT
Queue

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

MQ
Queue

File

FINISH

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI
reassembles

MQ messages
to a file for
processing

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 50

2.7.8.6 COD to Schools/SAIG Reports Detailed Design Description
The sample function selected for the COD to Schools/SAIG Reports interface validates the ability
to send COD data from the send script to the SAIG system. Once the source file is completed
(process is done writing to it), Data Integrator moves the flat file from COD to the appropriate
destination location in the SAIG system via MQSeries queues and channels.

The figure below describes the message flow for the COD to Schools/SAIG Reports interface.

The flow of a bulk file from COD to SAIG via Data Integrator and MQSeries queues is as
follows:

1. A file is created in a specified directory.

2. The JCL is called to Data Integrator sender adapter to initiate transfer of the file.

3. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (VD0Q) on COD moves the message to the specified XMIT queue.

4. The message is transmitted to the Receiver (EAI Queue Manager EAIA1). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (EAIA1.B) and appropriately
transmitted via the MQSeries message channel agent.

5. The Sender replies to the originating Manager, indicating that the file has been submitted.

6. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

7. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

8. The source file is deleted on a successful file transfer to the EAI bus.

9. Upon successful file transfer to the bus, Data Integrator calls a Java transformation
program to separate the files for each school.

10. Upon successful separation of the files, Data Integrator calls a script to initiate transfer of
the files to the appropriate SAIG schools’ mailbox.

SAIG
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is created
DI splits file to
MQ messages

START
File MQ

Queue
MQ

Queue
File

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

MQ
Queue

MQ
Queue

File

FINISH

DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
COD processes

File.

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

SAIG
HP-UX UNIX

COD
OS/390 Mainframe

EAI BUS SERVER
Sun Solaris UNIX

File is createdFile is created
DI splits file to
MQ messages
DI splits file to
MQ messages

START
File MQ

Queue
MQ

Queue
File

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

DI reassembles
MQ messages

To a file.
Processing of
File may occur

On EAI
Bus.

MQ
Queue

MQ
Queue

File

FINISH

DI splits file to
MQ messages
DI splits file to
MQ messages

DI leverages
MQSeries
to move

Messages to
destination

DI leverages
MQSeries
to move

Messages to
destination

DI reassembles
MQ messages

To a file.
COD processes

File.

DI reassembles
MQ messages

To a file.
COD processes

File.

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

MQ Series

Data Integrator (DI)

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
EAI BUILD AND TEST REPORT

9/6/02 80.1.3 51

11. The sender adapter splits the file into MQ messages, and the source (local) Queue
Manager (EAIA1) on the EAI bus moves the message to the specified XMIT queue.

12. The message is transmitted to the Receiver (SAIG Queue Manager SAIGT1). If the
Receiver is on a remote queue manager (in this case), the message destination is resolved
to a transmission queue or set of transmission queues (SAIGT1.B) and appropriately
transmitted via the MQSeries message channel agent.

13. The Sender replies to the originating Manager, indicating that the file has been submitted.

14. The Receiver adapter receives data from MQSeries to create the target data. The receiver
accepts a data transfer request and processes the inbound data from its data queues.

15. The Receiver reassembles the MQ message to a flat file and submits an operational reply
to the originating Manager.

16. Upon successful file transfer to SAIG, Data Integrator calls a post processor script to
handle the COD to Schools/SAIG Reports.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 52

3 EAI TEST METHODOLOGY

3.1 Interface Testing Process
For the purposes of this document, only the Interface Assembly Testing process will be detailed.
The purpose of Interface Assembly Testing is to validate that the construction of Release 3.0
application interfaces is consistent with the interface requirements and designs. The Interface
Assembly Testing process detailed in this section demonstrates the framework followed by the
EAI Team to ensure that the quality of each interface developed is consistent from release to
release.

3.1.1 Scope
The scope of Interface Assembly Testing is to test interfaces between the EAI Bus and the
Trading Partners. To assist in the validation of the EAI Core functionality for Release 3.0, the
EAI Core team developed a test driver application commonly referred to as a test stub. This test
driver application does not provide any business functionality, but simulates the Trading Partner
actions by providing a user interface for entering or retrieving message data from a file. The test
stub then sends messages for processing. In addition, the test stubs helps to isolate problems with
the EAI Bus before testing with the trading partners. The various custom components developed
by the COD EAI Interfaces team have been tested to ensure that the components interact
appropriately with each other.

A COD test stub simulates the responses expected by the Trading Partner from COD for
Assembly testing. See the diagram below.

Trading Partner EAI bus COD
Base App

Assembly Test Zone

COD
TestStub

Trading Ptr
Test Stub

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 53

3.1.2 Test Planning
Thorough planning of test cases ensures that end interfaces are robust. Listed below are the steps
required to plan test conditions.

1. Define Test Scenarios and Test Cycles

2. Create Test Data

3. Develop Test Environment and Load Data

3.1.3 Define Test Scenarios and Test Cycles
The testing process for the EAI Core Architecture Release 3.0 legacy systems includes the
creation of Test Scenarios that validate the functionality for each interface. Each scenario
contains three types of test cycles:

§ Normal – This cycle validates the interface functionality under normal operating conditions.

§ Expected Error – This cycle validates the interface functionality handling of know or
expected error conditions.

§ Unexpected Error - This cycle validates the interface functionality handling of application or
environment failures or outages such as server, network, or database connectivity outages.

For each interface tested, the following sections will be defined for each scenario:

• Test Scenario Description

• Test Scenario Dependencies

• Test Scenario Inputs

• Test Scenario Expected Results

3.1.3.1 Test Scenario Description
This section provides the objective and an overview of the test to be performed. It also outlines
functions exercised relative to the MQSeries, MQSeries Integrator and legacy system tests.

3.1.3.2 Test Scenario Dependencies
This section defines the system dependencies, both hardware and software that must be met prior
to test execution.

3.1.3.3 Test Scenario Inputs
This section provides a description of the data required to execute the test scenario.

3.1.3.4 Test Scenario Expected Results
This section provides the expected results, or output, of the particular test scenario. The expected
results for each test scenario are the same as if the transaction were executed on each system
without using MQSeries as the message transport. MQSeries is necessary to transport files via the
EAI Bus. However, expected results are independent of the transport mechanism used to move
these files, when no data transformation is required. Acceptance of the test is gained by

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 54

demonstrating to Accenture and FSA that the transaction is executed successfully (i.e. the
expected results are returned).

3.1.4 Create Test Data
Realistic test data was created to facilitate the functional, end-to-end test. It is important that test
data, once established, remains static so that the Test Team can create expected results that will
accurately reflect the environment in which product test is being conducted. The reference and
application data that were established for the test environment was backed up to establish the test
bed. This test bed was used to refresh the test environment if needed by the test cycles.

3.1.5 Develop Test Environment and Load Data
Testing was executed in a test environment. An exact Production environment replica was
created with production-like hardware and software configurations and process and data
distributions.

3.1.6 Test Execution
The execution consists of the following steps:

1. Execute Test Scenarios/Cycles

2. Verify Test Results

3. Create System Investigation Requests (SIRs) and Accept Fixes

4. Verify completion of exit/entry requirements

3.1.6.1 Execute Test Conditions/Scenarios
The Test Cycles have been executed for each interface scenario.

3.1.6.2 Verify Test Results
The test results were compared with the expected results in the test script and any discrepancies
were noted and the appropriate SIR was created.

3.1.6.3 Create System Investigation Reports (SIRs) and Accept Fixes
Each time a discrepancy between the actual results and the expected results was found, a system
investigation request (SIR) was created to formally log the issue. The discrepancy may be, but is
not limited to, an error, a defect, an environmental problem, a usability enhancement or a
miscalculated expected result.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 55

3.1.7 Test Environment
The intent of the diagram is to show the components of the EAI Bus Architecture implemented
for Release 3.0 of the EAI Core. The location of MQSeries, MQSI, databases and adapters are
shown.

.

EAI BUS Infrastructure
CPS

 EAI BUS Architecture Overview (Development/Test)

EAI BUS Server Cluster

MQSeries
Server

NSLDS

SAIG

MQSeries
Server

MQSeries
Server

QMgrE

QMgrD

DLSS

MQSeries
Server

QMgrF

eCB

MQSeries
Server

QMgrG

MQSeries Server

QMgrA

Websphere Application Server

 Oracle

Web Server

Adapter

Applications
QMgrC

MQSI
Broker 1

DB2

Applications

Applications

Applications

Applications

Applications

MQSeries
Server

QMgrX

Adapter

Adapter

Adapter

CICS
DPL

Bridge

CICS
DPL

Bridge

FMS/FARS

MQSeries
Server

QMgrH
Applications

Adapter

PEPS

MQSeries
Server

QMgrI
Applications

Adapter

LO System-eMPN / DLOS

MQSeries
Server

QMgrJ
Applications

Adapter

P-Note Imaging

Applications

 Socket

Config-
uration

Mgr

MQSI Development NT Server

D
ep

lo
ym

en
t

NT Client/MQSI Control Center

NT Client/ MQSI Control Center

COD

MQSeries
Server

QMgrE
Applications

Adapter

CMDM

MQSeries
Server

QMgrE
Applications

Adapter

FPDM

MQSeries
Server

QMgrE
Applications

Adapter

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 56

4 EAI COMPONENT TESTS

4.1 FARS Retirement DLSS – CMDM Interface - Batch
The Credit Management Data Mart (CMDM) receives daily feeds of financial transaction
information from the FSA Financial Management System (FMS) system. These financial
transactions provide the CMDM reporting capability for the Direct Loan portfolio of FSA. The
financial transactions originate in the Direct Loan Servicing System (DLSS) and are posted (in
summary form) within the FMS system. The supporting detail is then extracted from FMS and
delivered to the CMDM via the EAI bus architecture.

4.1.1 DLSS to CMDM – Batch Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the DLSS to
CMDM interface is based on a bulk file transfer from DLSS to CMDM system. The EAI
development team provided parameters to the Open VMS (Virtual Memory System) step that
initiates the file transfer. Data Integrator is configured to manage the file transfers and initiate the
start of the application process at different stages (e.g., EAI Bus) of the file transfer. Data
Integrator leverages MQSeries to send large files as MQ messages and load balance the messages
over multiple MQSeries queues.

4.1.2 DLSS to CMDM – Batch Test Scenario Dependencies
To execute the DLSS to FPDM interface test scenario the following dependencies were met:

- MQSeries Messaging and queue managers on each of the following systems are
operational, logically referred to as CRDEV2, SU35E5 and SU35E16 or SU35E17.

- Data Integrator must be operational on either of the following systems, logically referred
to as CRDEV2, SU35E5 and SU35E16 or SU35E17.

- Data Integrator has access to read and write files on DLSS & CMDM systems.

- The Data Integrator send and post processing shell script that will transmit the file has
been created and is operational.

4.1.3 DLSS to CMDM – Batch Test Scenario Inputs
This interface transports file from DLSS to the EAI Bus and finally to CMDM via Data
Integrator. The EAI Bus is simply a pass through for the files and, no transformation is
performed. Two types of test data were used in the Assembly Test:

1. A test file was created by the EAI team to test the connectivity between the DLSS,
EAI Bus and CMDM.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the DLSS to CMDM interface.

4.1.4 DLSS to CMDM – Batch Test Scenario Expected Results
The EAI Core team provided ACS (DLSS System Administrators) with the commands necessary
to initiate file transfers from the DLSS test system to the CMDM test system. All batch file
transfers were initiated at DLSS by ACS. The files were written to a target directory

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 57

(/ftparea/cm_ftp_in/SrcFiles/Demographic) on CMDM and verified by the FARS Retirement
team.

4.2 FARS Retirement FMS – CMDM Interface - Batch
This section is related to section 4.1. Please see section 4.1 for additional details.

4.2.1 FMS to CMDM – Batch Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the FMS to CMDM
interface is based on a bulk file transfer from DLSS to CMDM system. The EAI development
team provided a shell script that initiates the file transfer. Data Integrator was configured to
manage the file transfers and initiate the start of the application process at different stages (e.g.,
EAI Bus) of the file transfer. Data Integrator leverages MQSeries to send large files as MQ
messages and load balance the messages over multiple MQSeries queues.

4.2.2 FMS to CMDM – Batch Test Scenario Dependencies
To execute the FMS to CMDM interface test scenario the following dependencies were met:

- MQSeries Messaging and queue managers on each of the following systems are
operational, logically referred to as HPL6, SU35E5 and SU35E16 or SU35E17.

- Data Integrator must be operational on either of the following systems, logically referred
to as HPL6, SU35E5 and SU35E16 or SU35E17.

- Data Integrator has access to read and write files on FMS & CMDM systems.

- The Data Integrator send and post processing shell script for transmitting files has been
created and is operational.

4.2.3 FMS to CMDM – Batch Test Scenario Inputs
This interface transports files via Data Integrator and MQSeries, it flows from FMS to the EAI
Bus, to CMDM. The EAI Bus is simply a pass through for the files and, no transformation is
performed. Two types of test data were used in the system integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the FMS, EAI
Bus, and CMDM.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the FMS to CMDM interface.

4.2.4 FMS to CMDM – Batch Test Scenario Expected Results
The EAI Core team provided the FARS Retirement team with a script to initiate file transfers
from the FMS test system to the CMDM test system. The script is capable of detecting and
transferring multiple files of each file type. The FARS Retirement team verified that the files
were successfully transferred.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 58

4.3 Financial Partner Data Mart PEPS – FPDM Interface - Batch
The Financial Partner Data Mart (FPDM) feeds financial data from PEPS system to FPDM
(Informatica). The EAI batch enablement of the FPDM interface provides the capability to send
and receive flat files to and from PEPS to FPDM.

4.3.1 PEPS to FPDM – Batch Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the PEPS to FPDM
interface is based on a bulk file transfer from PEPS to FPDM system. The EAI development
team provided a shell script to initiate the file transfer. Data Integrator has been configured to
manage the file transfers and initiate the start of the application process at different stages (e.g.,
EAI Bus) of the file transfer. Data Integrator leverages MQSeries to send large files as MQ
messages and load balance the messages over multiple MQSeries queues.

4.3.2 PEPS to FPDM – Batch Test Scenario Dependencies
To execute the PEPS to FPDM interface test scenario the following dependencies were met:

- MQSeries Messaging and queue managers on each of the following systems are
operational, logically referred to as HPK1, SU35E5 and SU35E16 or SU35E17.

- Data Integrator must be operational on either of the following systems, logically referred
to as HPK1, SU35E5 and SU35E16 or SU35E17.

- Data Integrator has access to read and write files on PEPS & FPDM systems.

- The Data Integrator send and post processing shell script that will transmit the file has
been created and is operational.

4.3.3 PEPS to FPDM – Batch Test Scenario Inputs
The PEPS to FPDM interface test scenario includes three test cycles: 1) Normal 2) Expected
Error 3) Unexpected Error. This interface transports files via Data Integrator and MQSeries, it
flows from PEPS to the EAI Bus, to FPDM. The EAI Bus is simply a pass through for the files
and no transformation is performed. Two types of test data were used in the system integrated
test phase:

1. A test file was created by the EAI team to test the connectivity between the PEPS, EAI
Bus, and FPDM.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the PEPS to FPDM interface.

Refer to Appendix B for the detail test conditions.

4.3.4 PEPS to FPDM – Batch Test Scenario Expected Results
The Release 3.0 EAI Core team executed this PEPS to FPDM Interface test scenario and the
expected results were received and validated. All actual results matched the expected results.
Refer to Appendix B for the expected results from the test conditions.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 59

4.4 Financial Partner Data Mart NSLDS – FPDM Interface - Batch
The Financial partner Data Mart (FPDM) feeds financial data from the NSLDS system to FPDM
(Informatica). The EAI batch enablement of the FPDM interface provides the capability to send
and receive flat files to and from NSLDS to FPDM.

4.4.1 NSLDS to FPDM – Batch Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the NSLDS to
FPDM interface is based on a bulk file transfer from NSLDS to FPDM system. The EAI
development team provided a shell script that initiates the file transfer. Data Integrator has been
configured to manage the file transfers and imitate the start of the application process at different
stages of the file transfer. Data Integrator leverages MQSeries to send large files as MQ
messages and load balance the messages over multiple MQSeries queues.

4.4.2 NSLDS to FPDM – Batch Test Scenario Dependencies
To execute the NSLDS to FPDM interface test scenario the following dependencies were met:

- MQSeries Messaging and queue managers on each of the following systems are
operational, logically referred to as NSLDS (Test), SU35E5 and SU35E16 or SU35E17.

- Data Integrator must be operational on either of the following systems, logically referred
to as NSLDS (Test), SU35E5 and SU35E16 or SU35E17.

- Data Integrator has access to read and write files on NSLDS & FPDM systems.

- Data Integrator parameters have been provided for to complete the Job Control Language
(JCL) on NSLDS to trigger the send process.

- Data Integrator post processing shell script that will transmit the file has been created and
is operational.

4.4.3 NSLDS to FPDM – Batch Test Scenario Inputs
The NSLDS to FPDM interface test scenario includes three test cycles: 1) Normal 2) Expected
Error 3) Unexpected Error. This interface transports files via Data Integrator and MQSeries, it
flows from NSLDS to the EAI Bus, to FPDM. The EAI Bus is simply a pass through for the files
and, no transformation is performed. Two types of test data were used in the system integrated
test phase:

1. A test file was created by the EAI team to test the connectivity between the NSLDS, EAI
Bus, and FPDM.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the NSLDS to FPDM interface.

Refer to Appendix B for the detail test conditions.

4.4.4 NSLDS to FPDM – Batch Test Scenario Expected Results
The Release 3.0 EAI Core team executed this PEPS to FPDM interface test scenario and the
expected results were received and validated. All actual results matched the expected results.
Refer to Appendix B for the expected results from the test conditions.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 60

4.5 eCampus Based PEPS - eCB Interface - Batch
The eCampus Based (eCB) system receives school data from the PEPS system. The EAI batch
enablement of the eCB interface provides the capability to send and receive flat files from PEPS
to eCB.

4.5.1 PEPS to eCB – Batch Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the PEPS to eCB
interface is based on a bulk file transfer from PEPS to the eCB system. The EAI development
team provided a shell script that initiates the file transfer. Data Integrator has been configured to
manage the file transfers and initiate the start of the application process at different stages of the
file transfer. Data Integrator leverages MQSeries to send large files as MQ messages and load
balance the messages over multiple MQSeries queues.

4.5.2 PEPS to eCB – Batch Test Scenario Dependencies
To execute the PEPS to eCB interface test scenario the following dependencies were met:

- MQSeries Messaging and queue managers on each of the following systems are
operational, logically referred to as HPK1, SU35E5 and SU35E16 or SU35E17.

- Data Integrator must be operational on either of the following systems, logically referred
to as HPK1, SU35E5 and SU35E16 or SU35E17.

- Data Integrator has access to read and write files on PEPS & eCB systems.

- The Data Integrator send and post processing shell script that will transmit the file has
been created and is operational.

4.5.3 PEPS to eCB – Batch Test Scenario Inputs
This interface transports files via Data Integrator and MQSeries, it flows from PEPS to the EAI
Bus, to eCB and eCB to the EAI Bus, to PEPS. The EAI Bus is simply a pass through for the
files and, no transformation is performed. Four types of test data were used in the system
integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the PEPS, EAI
Bus, and eCB.

2. A test file was created by the EAI team to test the connectivity between the eCB, EAI
Bus, and PEPS.

3. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the PEPS to eCB interface.

Refer to Appendix C for the detail test conditions.

4.5.4 PEPS to eCB Interface – Batch Test Scenario Expected Results
The Release 3.0 EAI Core team executed this PEPS to eCB interface test scenario and the
expected results were received and validated. All actual results matched the expected results.
Refer to Appendix C for the expected results from the test conditions.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 61

4.6 eCampus Based eCB - FMS Interface - Batch
The eCampus Based (eCB) system sends financial data to the FMS system. The EAI batch
enablement of the eCB interface provides the capability to send and receive flat files from eCB to
FMS.

4.6.1 eCB to FMS – Batch Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the eCB to FMS
interface is based on a bulk file transfer from eCB to the FMS system. The EAI development
team provided a shell script that initiates the file transfer. Data Integrator has been configured to
manage the file transfers and initiate the start of the application process at different stages (e.g.,
EAI Bus) of the file transfer. Data Integrator leverages MQSeries to send large files as MQ
messages and load balance the messages over multiple MQSeries queues.

4.6.2 eCB to FMS – Batch Test Scenario Dependencies
To execute the eCB to FMS interface test scenario the following dependencies were met:

- MQSeries Messaging and queue managers on each of the following systems are
operational, logically referred to as HPL6, SU35E5 and SU35E16 or SU35E17.

- Data Integrator must be operational on either of the following systems, logically referred
to as HPL6, SU35E5 and SU35E16 or SU35E17.

- Data Integrator has access to read and write files on eCB & FMS systems.

- The Data Integrator send and post processing shell script that will transmit file has been
created and is operational.

4.6.3 eCB to FMS – Batch Test Scenario Inputs
The test files were created by the eCB application team and are of the same size as the eCB
production files. The EAI team executed the following test conditions:

- Send files from eCB to EAI Bus

- Send files from EAI Bus to FMS

- Send files from FMS to EAI Bus (flat file transfer only – no MQSI message flow)

- Send files from EAI Bus to eCB (flat file transfer only – no MQSI message flow)

Refer to Appendix C for the detail test conditions.

4.6.4 eCB to FMS – Batch Test Scenario Expected Results
The Release 3.0 EAI Core team executed this eCB to FMS interface test scenario and the
expected results were received and validated. All actual results matched the expected results.
Refer to Appendix C for the expected results from the test conditions.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 62

4.7 COD Interfaces

4.7.1 COD to CPS Interface

4.7.1.1 Abbreviated Applicant File
The Abbreviated Applicant data is transmitted from CPS to COD whenever CPS processes
applications. The needed data is similar to the file currently provided to RFMS with a few
additional fields. In addition, the file will contain not only all Pell eligible applicants, but also all
applicants with an Expected Family Contribution greater than or equal to zero.

4.7.1.1.1 Abbreviated Applicant File - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure Abbreviated Applicant
File interface is based on a bulk file transfer from CPS to COD system. The EAI development
team provided parameters to Job Control Language (JCL) step that initiates the file transfer. Data
Integrator has been configured to manage the file transfers and imitate the start of the application
process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator leverages
MQSeries to send large files as MQ messages and load balance the messages over multiple
MQSeries queues.

4.7.1.1.2 Abbreviated Applicant File – Test Scenario Dependencies
To transfer the Abbreviated Applicant File interface test scenario the following dependencies
were met:

- CPS must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- CPS must have MQSeries and Data Integrator running.

- CPS must produce the Abbreviated Applicant File and place it into an agreed upon
directory for processing.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- CPS must make the agreed upon directory read/write-able for the Utility.

- CPS must provide a compiler for C++ for use by the EAI Team.

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the Abbreviated Applicant File from
the appropriate MQSeries Queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 63

4.7.1.1.3 Abbreviated Applicant File - Test Scenario Inputs

The Abbreviated Applicant File interface test scenario includes three test cycles: 1) Normal
2) Expected Error 3) Unexpected Error. This interface transports files via Data Integrator
and MQSeries, it flows from CPS to the EAI Bus, to COD. The EAI Bus is simply a pass
through for the files and no transformation is performed. Two types of test data were
used in the system integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the CPS, EAI
Bus, and COD.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the CPS to COD interface.

Refer to Appendix D for the detail test conditions.

4.7.1.2 Abbreviated Applicant File – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Abbreviated Applicant File interface test scenario
and the expected results were received and validated. All actual results matched the expected
results. Refer to Appendix D for the expected results from the test conditions.

4.7.1.3 Pell Institution Universe File
Today, RFMS produces the Pell Institution Universe File to provide CPS with a weekly record of
Pell Institution processing. This file is extracted and transmitted to CPS upon successful
completion of the RFMS weekly processing cycle. The file contains all institution data from
RFMS for Pell IDs beginning with a 0 and will be sorted in Pell ID order.

COD updates Institution data for both Pell and Direct Loan school interactions. This updated
data for Pell institutions is provided to CPS on a daily basis.

4.7.1.3.1 Pell Institution Universe File - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Pell Institution
Universe File interface is based on a bulk file transfer from COD to CPS system. The EAI
development team provided parameters to Job Control Language (JCL) that initiates the file
transfer. Data Integrator has been configured to manage the file transfers and imitate the start of
the application process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator
leverages MQSeries to send large files as MQ messages and load balance the messages over
multiple MQSeries queues.

4.7.1.3.2 Pell Institution Universe File – Test Scenario Dependencies
To transfer the Pell Institution Universe File interface test scenario the following dependencies
were met:

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must place components necessary to create the Pell Institution Universe File onto
the appropriate MQSeries Queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 64

- COD must send an MQSeries Message that will trigger the utility on the CPS system
when the entire batch has been committed to MQSeries queues on the EAI Bus.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- CPS must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- CPS must have MQSeries and Data Integrator running.

- CPS must accept the Pell Institution Universe File into an agreed upon directory for
processing.

- CPS must make the agreed upon directory read/write-able for the Utility.

- CPS must provide a compiler for C++ for use by the EAI Team.

4.7.1.3.3 Pell Institution Universe File - Test Scenario Inputs
The Pell Institution Universe File interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports files via Data Integrator and
MQSeries, it flows from COD to the EAI Bus, to CPS. The EAI Bus is simply a pass through for
the files and, no transformation is performed. Two types of test data were used in the system
integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the COD, EAI
Bus, and CPS.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the COD to CPS interface.

Refer to Appendix D for the detail test conditions.

4.7.1.3.4 Pell Institution Universe File – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Pell Institution Universe File test scenario and the
expected results were received and validated. All actual results matched the expected results.
Refer to Appendix D for the expected results from the test conditions.

4.7.1.4 Pell Recipient File
Pell Recipient data is produced for several other organizations internal and external to FSA. CPS
uses the data for verification analysis and for end-of-year reporting. CPS will need the first file in
April 2003 with data for the 02-03 Award Year. CPS needs the file several other times
throughout the year, with the final delivery in December 2003 for the 02-03 Award Year. Due to
the size of this data, it is currently provided to the other systems via tape. COD and CPS will
work towards providing electronic delivery of this file. CPS would like to have an electronic
mechanism for requesting the file.

4.7.1.4.1 Pell Recipient File - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Pell Recipient File
interface is based on a bulk file transfer from COD to CPS system. The EAI development team

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 65

provided parameters to Job Control Language (JCL) that initiates the file transfer. Data
Integrator has been configured to manage the file transfers and imitate the start of the application
process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator leverages
MQSeries to send large files as MQ messages and load balance the messages over multiple
MQSeries queues.

4.7.1.4.2 Pell Recipient File – Test Scenario Dependencies
To transfer the Pell Recipient File interface test scenario the following dependencies were met:

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must place components necessary to create the Pell Recipient File onto the
appropriate MQSeries Queue.

- COD must send an MQSeries Message that will trigger the utility on the CPS system
when the entire batch has been committed to MQSeries queues on the EAI Bus.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- CPS must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- CPS must have MQSeries and Data Integrator running.

- CPS must accept the Pell Recipient File into an agreed upon directory for processing.

- CPS must make the agreed upon directory read/write-able for the Utility.

- CPS must provide a compiler for C++ for use by the EAI Team.

4.7.1.4.3 Pell Recipient File - Test Scenario Inputs
The Pell Recipient File interface test scenario included three test cycles: 1) Normal 2) Expected
Error 3) Unexpected Error. This interface transports files via Data Integrator and MQSeries, it
flows from COD to the EAI Bus, to CPS. The EAI Bus is simply a pass through for the files and,
no transformation is performed. Two types of test data were used in the system integrated test
phase:

1. A test file was created by the EAI team to test the connectivity between the COD, EAI
Bus, and CPS.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the COD to CPS interface.

Refer to Appendix D for the detail test conditions.

4.7.1.4.4 Pell Recipient File – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Pell Recipient File interface test scenario and the
expected results were received and validated. All actual results matched the expected results.
Refer to Appendix D for the expected results from the test conditions.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 66

4.7.2 COD to DLOS Interface

4.7.2.1 PLUS MPN Record
There are two times when a PLUS MPN Record is generated: 1) after processing an image on the
Imaging system, and 2) after a user files a PLUS MPN on-line. A PLUS MPN record is
generated and sent to COD by the eMPN component on the LOWEB Server upon the successful
completion of the PLUS eMPN process. This interface is transactional and is used as needed in
real time via MQ Series.

The Imaging system will generate and send to COD a PLUS MPN record upon the successful
completion of the imaging process for each paper PLUS MPN. This interface consists of a two-
step process of sending the data to the LOWEB Server via a socket connection, then using
MQSeries to send the message to COD. The transmission from the Imaging Server to the
LOWEB Server is entirely the responsibility of EDS.

4.7.2.1.1 PLUS MPN Record - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for PLUS MPN Record
interface is based on a real time message transfer from LOWEB to COD system. The EAI team
developed custom Java adapter code for LOWEB to place messages on the MQSeries queue.
MQSeries queues and channels enable messages to be transferred in real time.

4.7.2.1.2 PLUS MPN Record - Test Scenario Dependencies
To execute the PLUS MPN Record interface test scenario the following dependencies were met:

- LOWEB must have IBM MQSeries v5.2 installed.

- LOWEB must have MQSeries running.

- LOWEB must produce the PLUS MPN Record and place it on the appropriate MQSeries
Queue.

- LOWEB must have Java Runtime Environment and Java adapter code.

- EAI Bus must have IBM MQSeries v5.2 installed.

- EAI Bus must have MQSeries running.

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the PLUS MPN Record from the
appropriate MQSeries Queue.

4.7.2.1.3 PLUS MPN Record - Test Scenario Inputs
The PLUS MPN Record interface test scenario includes three test cycles: 1) Normal 2) Expected
Error 3) Unexpected Error. This interface transports data via MQSeries; it flows from LOWEB
to the EAI Bus to COD. The EAI Bus is simply a pass through for the messages and no
transformation is performed. One type of test data was used in the system integrated test phase:

1. A test PLUS MPN Record was created by the EAI team to test the connectivity between
the LOWEB, EAI Bus, and COD.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 67

Refer to Appendix E for the detail test conditions.

4.7.2.1.4 PLUS MPN Record - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this PLUS MPN Record interface test scenario and the
expected results were received and validated. All actual results matched the expected results.
Refer to Appendix E for the expected results from the test conditions.

4.7.2.2 PLUS Endorser Record
The Imaging system generates and sends to COD the PLUS Endorser record upon the successful
completion of the imaging process for each endorser addendum. This interface consists of a two-
step process of sending the data to the LOWEB Server via a socket connection, then using
MQSeries to send the message to COD. The transmission from the Imaging Server to the
LOWEB Server is entirely the responsibility of EDS.

4.7.2.3 PLUS Endorser Record - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for PLUS Endorser
Record interface was based on a real time message transfer from LOWEB to COD system. The
EAI team developed custom Java adapter code for LOWEB to place messages on the MQSeries
queue. MQSeries queues and channels enable messages to be transferred in real time.

4.7.2.3.1 PLUS Endorser Record - Test Scenario Dependencies
To execute the PLUS Endorser Record interface test scenario the following dependencies were
met:

- LOWEB must have IBM MQSeries v5.2 installed.

- LOWEB must have MQSeries running.

- LOWEB must produce the PLUS Endorser Record and place it on the appropriate
MQSeries Queue.

- LOWEB must have Java Runtime Environment and Java adapter code.

- EAI Bus must have IBM MQSeries v5.2 installed.

- EAI Bus must have MQSeries running.

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the PLUS MPN Record from the
appropriate MQSeries Queue.

4.7.2.3.2 PLUS Endorser Record - Test Scenario Inputs
The PLUS Endorser Record interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports data via MQSeries; it flows from
LOWEB to the EAI Bus to COD. The EAI Bus is simply a pass through for the messages and no
transformation is performed. One type of test data was used in the system integrated test phase:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 68

1. A test PLUS Endorser Record was created by the EAI team to test the connectivity
between the LOWEB, EAI Bus, and COD.

Refer to Appendix E for the detail test conditions.

4.7.2.3.3 PLUS Endorser Record - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this PLUS Endorser Record interface test scenario and
the expected results were received and validated. All actual results matched the expected results.
Refer to Appendix E for the expected results from the test conditions.

4.7.2.3.4 Borrower Validation & MPN ID Number Request/Response
Schools have the option to require that potential borrowers have an award originated in COD
before allowing borrowers to complete a MPN. This interface allows the eMPN system to query
COD to see if the award has been established by the school for the borrower. The interface is
transactional and is used as needed in real time via MQ Series. The response includes the MPN
ID if one is available.

4.7.2.3.5 Borrower Validation & MPN ID Number Request - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Borrower
Validation & MPN ID Number Request interface is based on a real time message transfer from
LOWEB to COD system. The EAI team developed custom Java adapter code for LOWEB to
place messages on the MQSeries queue. MQSeries queues and channels enable messages to be
transferred in real time.

4.7.2.3.6 Borrower Validation & MPN ID Number Request - Test Scenario Dependencies
To execute the Borrower Validation & MPN ID Number Request interface test scenario the
following dependencies must be met:

- LOWEB must have IBM MQSeries v5.2 installed.

- LOWEB must have MQSeries running.

- LOWEB must produce the Borrower Validation & MPN ID Number Request and place it
on the appropriate MQSeries Queue.

- LOWEB must have Java Runtime Environment and Java adapter code.

- EAI Bus must have IBM MQSeries v5.2 installed.

- EAI Bus must have MQSeries running.

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the Borrower Validation & MPN ID
Number Request from the appropriate MQSeries Queue.

4.7.2.3.7 Borrower Validation & MPN ID Number Request - Test Scenario Inputs
The Borrower Validation & MPN ID Number Request interface test scenario includes three test
cycles: 1) Normal 2) Expected Error 3) Unexpected Error. This interface transports data via

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 69

MQSeries; it flows from LOWEB to the EAI Bus to COD. The EAI Bus is simply a pass through
for the messages and no transformation is performed. One type of test data was used in the
system integrated test phase:

1. A test Borrower Validation & MPN ID Number Request was created by the EAI team to
test the connectivity between the LOWEB, EAI Bus, and COD.

Refer to Appendix E for the detail test conditions.

4.7.2.3.8 Borrower Validation & MPN ID Number Request - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Borrower Validation & MPN ID Number Request
test scenario and the expected results were received and validated. All actual results matched the
expected results. Refer to Appendix E for the expected results from the test conditions.

4.7.2.3.9 Borrower Validation & MPN ID Number Response - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Borrower
Validation & MPN ID Number Response interface is based on a real time message transfer from
COD to LOWEB system. The EAI team developed custom Java adapter code for LOWEB to
retrieve messages on the MQSeries queue. MQSeries queues and channels enable messages to be
transferred in real time.

4.7.2.3.10 Borrower Validation & MPN ID Number Response - Test Scenario Dependencies
To execute the Borrower Validation & MPN ID Number Response interface test scenario the
following dependencies were met:

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the Borrower Validation & MPN ID
Number Response from the appropriate MQSeries Queue.

- EAI Bus must have IBM MQSeries v5.2 installed.

- EAI Bus must have MQSeries running.

- LOWEB must have IBM MQSeries v5.2 installed.

- LOWEB must have MQSeries running.

- LOWEB must produce the Borrower Validation & MPN ID Number Response and place
it on the appropriate MQSeries Queue.

- LOWEB must have Java Runtime Environment and Java adapter code.

4.7.2.3.11 Borrower Validation & MPN ID Number Response - Test Scenario Inputs
The Borrower Validation & MPN ID Number Response interface test scenario includes three test
cycles: 1) Normal 2) Expected Error 3) Unexpected Error. This interface transports data via
MQSeries; it flows from COD to the EAI Bus to LOWEB. The EAI Bus is simply a pass through
for the messages and no transformation is performed. One type of test data was used in the
system integrated test phase:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 70

1. A test Borrower Validation & MPN ID Number Response was created by the EAI team
to test the connectivity between the COD, EAI Bus, and LOWEB.

Refer to Appendix E for the detail test conditions.

4.7.2.3.12 Borrower Validation & MPN ID Number Response - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Borrower Validation & MPN ID Number Response
interface test scenario and the expected results were received and validated. All actual results
matched the expected results. Refer to Appendix E for the expected results from the test
conditions.

4.7.2.4 LO Web and DLOS Credit Checks
The LO Web application and DLOS Batch application shares an interface on the LO Web server
to retrieve credit check information from COD. The LO Web application offers school users the
ability to perform credit checks for potential PLUS loan borrowers and DLOS will need the
ability to obtain credit check information for prior year (before AY 02-03) PLUS loans. This
interface is transactional and is used as needed in real time via MQ Series.

4.7.2.4.1 LO Web and DLOS Credit Checks Request - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for LO Web and
DLOS Credit Checks Request interface is based on a real time message transfer from LOWEB to
COD system. The EAI team developed custom Java adapter code for LOWEB to place messages
on the MQSeries queue. MQSeries queues and channels enable messages to be transferred in real
time.

4.7.2.4.2 LO Web and DLOS Credit Checks Request - Test Scenario Dependencies
To execute the LO Web and DLOS Credit Checks Request interface test scenario the following
dependencies were met:

- LOWEB must have IBM MQSeries v5.2 installed.

- LOWEB must have MQSeries running.

- LOWEB must produce the LO Web and DLOS Credit Checks Request and place it on the
appropriate MQSeries Queue.

- LOWEB must have Java Runtime Environment and Java adapter code.

- EAI Bus must have IBM MQSeries v5.2 installed.

- EAI Bus must have MQSeries running.

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the LO Web and DLOS Credit Checks
Request from the appropriate MQSeries Queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 71

4.7.2.4.3 LO Web and DLOS Credit Checks Request - Test Scenario Inputs
The LO Web and DLOS Credit Checks Request interface test scenario includes three test cycles:
1) Normal 2) Expected Error 3) Unexpected Error. This interface transports data via MQSeries; it
flows from LOWEB to the EAI Bus to COD. The EAI Bus is simply a pass through for the
messages and no transformation is performed. One type of test data was used in the system
integrated test phase:

1. A test LO Web and DLOS Credit Checks Request was created by the EAI team to test the
connectivity between the LOWEB, EAI Bus, and COD.

 Refer to Appendix E for the detail test conditions.

4.7.2.4.4 LO Web and DLOS Credit Checks Request - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this LO Web and DLOS Credit Checks Request
interface test scenario and the expected results were received and validated. All actual results
matched the expected results. Refer to Appendix E for the expected results from the test
conditions.

4.7.2.4.5 LO Web and DLOS Credit Checks Response - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for LO Web and
DLOS Credit Checks Response interface is based on a real time message transfer from COD to
LOWEB system. The EAI team developed custom Java adapter code for LOWEB to retrieve
messages on the MQSeries queue. MQSeries queues and channels enable messages to be
transferred in real time.

4.7.2.4.6 LO Web and DLOS Credit Checks Response - Test Scenario Dependencies
To execute the LO Web and DLOS Credit Checks Response interface test scenario the following
dependencies were met:

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the LO Web and DLOS Credit Checks
Response from the appropriate MQSeries Queue.

- EAI Bus must have IBM MQSeries v5.2 installed.

- EAI Bus must have MQSeries running.

- LOWEB must have IBM MQSeries v5.2 installed.

- LOWEB must have MQSeries running.

- LOWEB must produce the LO Web and DLOS Credit Checks Response and place it on
the appropriate MQSeries Queue.

- LOWEB must have Java Runtime Environment and Java adapter code.

4.7.2.4.7 LO Web and DLOS Credit Checks Response - Test Scenario Inputs
The LO Web and DLOS Credit Checks Response interface test scenario includes three test
cycles: 1) Normal 2) Expected Error 3) Unexpected Error. This interface transports data via

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 72

MQSeries; it flows from COD to the EAI Bus to LOWEB. The EAI Bus is simply a pass through
for the messages and no transformation is performed. One type of test data was used in the
system integrated test phase:

1. A test LO Web and DLOS Credit Checks Response was created by the EAI team to test
the connectivity between the COD, EAI Bus, and LOWEB.

Refer to Appendix E for the detail test conditions.

4.7.2.4.8 LO Web and DLOS Credit Checks Response - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this LO Web and DLOS Credit Checks Response
interface test scenario and the expected results were received and validated. All actual results
matched the expected results. Refer to Appendix E for the expected results from the test
conditions.

4.7.2.5 P-Note Linking Request
This interface allows COD to request promissory note information for Stafford subsidized and
unsubsidized loans from DLOS to verify that Direct Loan awards in COD have a corresponding
promissory note. This is a batch interface between COD and DLOS and is transmitted directly
between the two systems daily. This interface is a direct connection from COD to DLOS. COD
is responsible for this interface.

4.7.2.5.1 Date Change Payment Trigger
When COD generates the first disbursement for direct loan, the actual disbursement date is sent
via this interface so that DLOS can recalculate the expiration date for the promissory note. This
interface is a direct connection from COD to DLOS. COD is responsible for this interface.

4.7.2.5.2 Unsolicited MPN and Link Response
The response to the P-Note link request includes the identifier for the requested loan, if found, or
the status as pending. In addition, data about promissory notes that have been received without a
corresponding award request are provided via this interface. This interface is a direct connection
from DLOS to COD. COD is responsible for this interface.

4.7.2.5.3 MPN Status Change
For AY 02-03, DLOS will maintain Stafford subsidized and unsubsidized P-Note information.
This interface allows DLOS to notify COD of any changes to promissory note information for
subsidized or unsubsidized loans. This is a batch interface and is transmitted directly from DLOS
to COD daily. This interface is a direct connection from DLOS to COD. COD is responsible for
this interface.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 73

4.7.3 COD to DLSS Overview

4.7.3.1 DLSS Batch Feed
This feed contains daily updates of Loan Bookings, School Data, and other DLSS-relevant data
that is provided by COD to DLSS.

4.7.3.1.1 DLSS Batch Feed - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for DLSS Batch Feed
interface is based on a bulk file transfer from COD to DLSS system. The EAI development team
provided parameters to Job Control Language (JCL) that initiates the file transfer. Data
Integrator has been configured to manage the file transfers and imitate the start of the application
process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator leverages
MQSeries to send large files as MQ messages and load balance the messages over multiple
MQSeries queues.

4.7.3.1.2 DLSS Batch Feed – Test Scenario Dependencies
To transfer the DLSS Batch Feed interface test scenario the following dependencies were met:

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must place components necessary to create the DLSS Batch Feed file onto the
appropriate MQSeries Queue.

- COD must send an MQSeries Message that will trigger the utility on the DLSS system
when the entire batch has been committed to MQSeries queues on the EAI Bus.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- DLSS must have IBM MQSeries v2.2.1.1 and Commerce Quest Data Integrator v4.0.1
installed.

- DLSS must have MQSeries and Data Integrator running.

- DLSS must accept the DLSS Batch Feed into an agreed upon directory for processing.

- DLSS must make the agreed upon directory read/write-able for the Utility.

- DLSS must provide a compiler for C++, v6.2 on an ALPHA 4100, with VMS7.2-1 for
use by the EAI Team.

4.7.3.1.3 DLSS Batch Feed - Test Scenario Inputs
The DLSS Batch Feed interface test scenario includes three test cycles: 1) Normal 2) Expected
Error 3) Unexpected Error. This interface transports files via Data Integrator and MQSeries; it
flows from COD to the EAI Bus to DLSS. The EAI Bus is simply a pass through for the files and
no transformation is performed. Two types of test data were used in the system integrated test
phase:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 74

1. A test file was created by the EAI team to test the connectivity between the COD, EAI
Bus, and DLSS.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the COD to DLSS interface.

Refer to Appendix F for the detail test conditions.

4.7.3.1.4 DLSS Batch Feed – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this DLSS Batch Feed interface test scenario and the
expected results were received and validated. All actual results matched the expected results.
Refer to Appendix F for the expected results from the test conditions.

4.7.3.2 DLSS Batch Response
This feed contains daily responses from DLSS to COD to updates of Loan Bookings, School Data
and other DLSS-relevant previously provided by COD to DLSS.

4.7.3.2.1 DLSS Batch Response - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for DLSS Batch
Response interface is based on a bulk file transfer from DLSS to COD system. The EAI
development team provided parameters to Open VMS (Virtual Memory System) step that
initiates the file transfer. Data Integrator has been configured to manage the file transfers and
imitate the start of the application process at different stages (e.g., EAI Bus) of the file transfer.
Data Integrator leverages MQSeries to send large files as MQ messages and load balance the
messages over multiple MQSeries queues.

4.7.3.2.2 DLSS Batch Response – Test Scenario Dependencies
To transfer the DLSS Batch Response interface test scenario the following dependencies were
met:

- DLSS must have IBM MQSeries v2.2.1.1 and Commerce Quest Data Integrator v4.0.1
installed.

- DLSS must have MQSeries and Data Integrator running.

- DLSS must produce the DLSS Batch Response file and place it into an agreed upon
directory for processing.

- DLSS must make the agreed upon directory read/write-able for the Utility

- DLSS must provide a compiler for C++, v6.2 on an ALPHA 4100, with VMS7.2-1 for
use by the EAI Team.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 75

- COD must have MQSeries running.

- COD must place components necessary to retrieve the DLSS Batch Response from the
appropriate MQSeries Queue.

4.7.3.2.3 DLSS Batch Response - Test Scenario Inputs
The DLSS Batch Response interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports files via Data Integrator and
MQSeries; it flows from DLSS to the EAI Bus to COD. The EAI Bus is simply a pass through
for the files and no transformation is performed. Two types of test data were used in the system
integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the DLSS, EAI
Bus, and COD.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the DLSS to COD interface.

Refer to Appendix F for the detail test conditions.

4.7.3.2.4 DLSS Batch Response – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this DLSS Batch Response interface test scenario and
the expected results were received and validated. All actual results matched the expected results.
Refer to Appendix F for the expected results from the test conditions.

4.7.3.3 Disbursement Confirmations (RDC’s)
This feed contains Confirmations of COD-initiated FLA, FLB, and FLD transactions that took
place since the last Disbursement Confirmation File that was sent to COD by DLSS. The process
is part of the COD-DLSS Reconciliation Process.

4.7.3.3.1 Disbursement Confirmations - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure Disbursement
Confirmation interface is based on a bulk file transfer from DLSS to COD system. The EAI
development team provided parameters to Open VMS (Virtual Memory System) step that
initiates the file transfer. Data Integrator has been configured to manage the file transfers and
imitate the start of the application process at different stages (e.g., EAI Bus) of the file transfer.
Data Integrator leverages MQSeries to send large files as MQ messages and load balance the
messages over multiple MQSeries queues.

4.7.3.3.2 Disbursement Confirmations – Test Scenario Dependencies
To transfer the Disbursement Confirmations interface test scenario the following dependencies
were met:

- DLSS must have IBM MQSeries v2.2.1.1 and Commerce Quest Data Integrator v4.0.1
installed.

- DLSS must have MQSeries and Data Integrator running.

- DLSS must produce the Disbursement Confirmations file and place it into an agreed
upon directory for processing.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 76

- DLSS must make the agreed upon directory read/write-able for the Utility.

- DLSS must provide a compiler for C++, v6.2 on an ALPHA 4100, with VMS7.2-1 for
use by the EAI Team.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the Disbursement Confirmations from
the appropriate MQSeries Queue.

4.7.3.3.3 Disbursement Confirmations - Test Scenario Inputs
The Disbursement Confirmations interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports files via Data Integrator and
MQSeries; it flows from DLSS to the EAI Bus to COD. The EAI Bus is simply a pass through
for the files and no transformation is performed. Two types of test data were used in the system
integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the DLSS, EAI
Bus, and COD.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the DLSS to COD interface.

Refer to Appendix F for the detail test conditions.

4.7.3.3.4 Disbursement Confirmations – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Disbursement Confirmations interface test scenario
and the expected results were received and validated. All actual results matched the expected
results. Refer to Appendix F for the expected results from the test conditions.

4.7.4 COD to FMS Overview

4.7.4.1 Financial Transactions
This interface enables FMS and COD to exchange accounting information. This interface is
transactional and is used as needed in real time via MQ Series.

4.7.4.1.1 Financial Transactions Input –Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the Financial
Transactions Input interface is based on a real time message transfer from COD to the FMS
system. The EAI team configured MQSeries Integrator (MQSI) and developed custom Java
adapter to store messages on the FMS database.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 77

4.7.4.1.2 Financial Transactions Input - Test Scenario Dependencies
To execute the Financial Transactions Input interface test scenario the following dependencies
were met:

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must have the necessary component to place the Financial Transactions Input on
the appropriate MQSeries Queue.

- EAI Bus must have IBM MQSeries v5.2 and IBM MQSeries Integrator (MQSI) v2.0.1
installed.

- EAI Bus must have MQSeries and MQSI running.

- FMS must have IBM MQSeries v5.2 and Oracle database installed.

- FMS must have MQSeries and Oracle running.

- FMS must store the Financial Transactions Input in the appropriate Oracle database
tables.

- FMS must have Java Runtime Environment and Java adapter code.

4.7.4.1.3 Financial Transactions Input - Test Scenario Inputs
The Financial Transactions Input interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports data via MQSeries; it flows from
COD to the EAI Bus to FMS. The EAI Bus passes the message and uses MQSI to convert
messages to SQL statements. One type of test data was used in the system integrated test phase:

1. A test Financial Transactions Input was created by the EAI team to test the connectivity
between the COD, EAI Bus, and FMS.

Refer to Appendix G for the detail test conditions.

4.7.4.1.4 Financial Transactions Input - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Financial Transactions Input interface test scenario
and the expected results were received and validated. All actual results matched the expected
results. Refer to Appendix G for the expected results from the test conditions.

4.7.4.1.5 Financial Transactions Retrieval –Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the Financial
Transactions Retrieval interface is based on a real time message transfer from FMS to the COD
system. The EAI team configured MQSeries Integrator (MQSI) and developed custom Java
adapter to retrieve messages from the FMS database.

4.7.4.1.6 Financial Transactions Retrieval - Test Scenario Dependencies
To execute the Financial Transactions Retrieval interface test scenario the following
dependencies were met:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 78

- FMS must have IBM MQSeries v5.2 and Oracle database installed.

- FMS must have MQSeries and Oracle running.

- FMS must have Financial Transactions stored in the appropriate Oracle database tables.

- FMS must have Java Runtime Environment and Java adapter code.

- EAI Bus must have IBM MQSeries v5.2 and IBM MQSeries Integrator (MQSI) v2.0.1
installed.

- EAI Bus must have MQSeries and MQSI running.

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must have the necessary component to retrieve the Financial Transactions from the
appropriate MQSeries Queue.

4.7.4.1.7 Financial Transactions Retrieval - Test Scenario Inputs
The Financial Transactions Retrieval interface test scenario includes three test cycles: 1) Normal
2) Expected Error 3) Unexpected Error. This interface transports data via MQSeries; it flows
from FMS to the EAI Bus to COD. The EAI Bus passes the message and uses MQSI to convert
SQL statements to COD messages. One type of test data was used in the system integrated test
phase:

1. A test Financial Transactions Retrieval was created by the EAI team to test the
connectivity between the FMS, EAI Bus, and FMS.

Refer to Appendix G for the detail test conditions.

4.7.4.1.8 Financial Transactions Retrieval - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Financial Transactions Retrieval interface test
scenario and the expected results were received and validated. All actual results matched the
expected results. Refer to Appendix G for the expected results from the test conditions.

4.7.4.2 School Information
This interface enables COD to send Institution Data to FMS. This interface is transactional and is
used as needed in real time via MQ Series.

4.7.4.2.1 School Information Input –Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the School
Information Input interface is based on a real time message transfer from COD to the FMS
system. The EAI team configured MQSeries Integrator (MQSI) and developed custom Java
adapter to store messages on the FMS database.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 79

4.7.4.2.2 School Information Input - Test Scenario Dependencies
To execute the School Information Input interface test scenario the following dependencies were
met:

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must have the necessary component to place the School Information Input on the
appropriate MQSeries Queue.

- EAI Bus must have IBM MQSeries v5.2 and IBM MQSeries Integrator (MQSI) v2.0.1
installed.

- EAI Bus must have MQSeries and MQSI running.

- FMS must have IBM MQSeries v5.2 and Oracle database installed.

- FMS must have MQSeries and Oracle running.

- FMS must store the School Information Input in the appropriate Oracle database tables.

- FMS must have Java Runtime Environment and Java adapter code.

4.7.4.2.3 School Information Input - Test Scenario Inputs
The School Information Input interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports data via MQSeries; it flows from
COD to the EAI Bus to FMS. The EAI Bus passes the message and uses MQSI to convert
messages to SQL statements. One type of test data was used in the system integrated test phase:

1. A test School Information Input was created by the EAI team to test the connectivity
between the COD, EAI Bus, and FMS.

Refer to Appendix G for the detail test conditions.

4.7.4.2.4 School Information Input - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this School Information Input interface test scenario
and the expected results were received and validated. All actual results matched the expected
results. Refer to Appendix G for the expected results from the test conditions.

4.7.4.2.5 School Information Retrieval –Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for the School
Information Retrieval interface is based on a real time message transfer from FMS to the COD
system. The EAI team configured MQSeries Integrator (MQSI) and developed custom Java
adapter to retrieve messages from the FMS database.

4.7.4.2.6 School Information Retrieval - Test Scenario Dependencies
To execute the School Information Retrieval interface test scenario the following dependencies
were met:

- FMS must have IBM MQSeries v5.2 and Oracle database installed.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 80

- FMS must have MQSeries and Oracle running.

- FMS must have School Information stored in the appropriate Oracle database tables.

- FMS must have Java Runtime Environment and Java adapter code.

- EAI Bus must have IBM MQSeries v5.2 and IBM MQSeries Integrator (MQSI) v2.0.1
installed.

- EAI Bus must have MQSeries and MQSI running.

- COD must have IBM MQSeries v2.1 installed.

- COD must have MQSeries running.

- COD must have the necessary component to retrieve the School Information from the
appropriate MQSeries Queue.

4.7.4.2.7 School Information Retrieval - Test Scenario Inputs
The School Information Retrieval interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports data via MQSeries; it flows from
FMS to the EAI Bus to COD. The EAI Bus passes the message and uses MQSI to convert SQL
statements to COD messages. One type of test data was used in the system integrated test phase:

1. A test School Information Retrieval was created by the EAI team to test the connectivity
between the FMS, EAI Bus, and FMS.

Refer to Appendix G for the detail test conditions.

4.7.4.2.8 School Information Retrieval - Test Scenario Expected Results
The Release 3.0 EAI Core team executed this School Information Retrieval interface test scenario
and the expected results were received and validated. All actual results matched the expected
results. Refer to Appendix G for the expected results from the test conditions.

4.7.4.3 Reconciliation and Balancing
This interface is a direct connection with FMS and COD. COD and FMS are responsible for this
interface.

4.7.5 COD to NSLDS Overview

4.7.5.1 Pell Recipient Information
The Pell Recipient data transmits from COD to NSLDS daily. The file reports all student data for
disbursement transactions processed by COD since the previous transmission. COD produces the
Student Disbursement and Eligibility File to provide NSLDS with a daily record of Pell student
disbursement processing and eligibility. This file will be extracted and transmitted to NSLDS
daily. The file reports all student data for disbursement transactions processed by COD since the
previous transmission. NSLDS prepares and returns to COD an error file after receiving and
processing the Student Disbursement and Eligibility File.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 81

4.7.5.1.1 Pell Recipient Information - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Pell Recipient
Information interface is based on a bulk file transfer from COD to NSLDS system. The EAI
development team provided parameters to Job Control Language (JCL) that initiates the file
transfer. Data Integrator has been configured to manage the file transfers and imitate the start of
the application process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator
leverages MQSeries to send large files as MQ messages and load balance the messages over
multiple MQSeries queues.

4.7.5.1.2 Pell Recipient Information – Test Scenario Dependencies
To execute the Pell Recipient Information interface test scenario the following dependencies were
met:

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must place components necessary to create the Pell Recipient Information file onto
the appropriate MQSeries Queue.

- COD must send an MQSeries Message that will trigger the utility on the NSLDS system
when the entire batch has been committed to MQSeries queues on the EAI Bus.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- NSLDS must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- NSLDS must have MQSeries and Data Integrator running.

- NSLDS must accept the Pell Recipient Information file into an agreed upon directory for
processing.

- NSLDS must make the agreed upon directory read/write-able for the Utility.

- NSLDS must provide a compiler for C++ for use by the EAI Team.

4.7.5.1.3 Pell Recipient Information - Test Scenario Inputs
The Pell Recipient Information interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports files via Data Integrator and
MQSeries; it flows from COD to the EAI Bus to NSLDS. The EAI Bus is simply a pass through
for the files and no transformation is performed. Two types of test data were used in the system
integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the COD, EAI
Bus, and NSLDS.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the COD to NSLDS interface.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 82

Refer to Appendix H for the detail test conditions.

4.7.5.1.4 Pell Recipient Information – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Pell Recipient Information interface test scenario
and the expected results were received and validated. All actual results matched the expected
results. Refer to Appendix H for the expected results from the test conditions.

4.7.5.2 Pell Recipient Data Errors
The Pell Recipient Data Errors is transmitted from NSLDS to COD daily. The file reports all
errors detected by NSLDS during the processing of the previous cycle’s Pell Recipient
Information file.

4.7.5.2.1 Pell Recipient Data Errors - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Pell Recipient Data
Errors interface is based on a bulk file transfer from NSLDS to COD system. The EAI
development team provided parameters to Job Control Language (JCL) that initiates the file
transfer. Data Integrator was configured to manage the file transfers and imitate the start of the
application process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator
leverages MQSeries to send large files as MQ messages and load balance the messages over
multiple MQSeries queues.

4.7.5.2.2 Pell Recipient Data Errors – Test Scenario Dependencies
To execute the Pell Recipient Data Errors interface test scenario the following dependencies were
met:

- NSLDS must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- NSLDS must have MQSeries and Data Integrator running.

- NSLDS must produce the Pell Recipient Data Errors file and place it into an agreed upon
directory for processing.

- NSLDS must make the agreed upon directory read/write-able for the Utility.

- NSLDS must provide a compiler for C++ for use by the EAI Team.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the Pell Recipient Data Errors from
the appropriate MQSeries Queue.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 83

4.7.5.2.3 Pell Recipient Data Errors - Test Scenario Inputs
The Pell Recipient Data Errors interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports files via Data Integrator and
MQSeries; it flows from NSLDS to the EAI Bus to COD. The EAI Bus is simply a pass through
for the files and no transformation is performed. Two types of test data were used in the system
integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the NSLDS, EAI
Bus, and COD.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the NSLDS to COD interface.

Refer to Appendix H for the detail test conditions.

4.7.5.2.4 Pell Recipient Data Errors – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Pell Recipient Data Errors interface test scenario
and the expected results were received and validated. All actual results matched the expected
results. Refer to Appendix H for the expected results from the test conditions.

4.7.6 COD to PEPS Overview

4.7.6.1 Daily Participants Feed
PEPS provides a daily feed of school data maintained within the PEPS system. This feed
contains a full extract of all participant eligibility data contained in PEPS that is useful to COD
processing. Although PEPS sends a complete extract on a daily basis (M-F, excluding holidays),
COD is only interested in receiving a full update for initial data load and disaster recovery. At
other times the feed is provided, COD will receive a daily batch containing only changes. This
delta file will be created and sent by the PEPS MQSeries Utility, which runs on the PEPS Server,
but outside of the PEPS Application.

Data Integrator uses a directory monitoring process to watch for the complete creation of a source
flat file in a specified directory. The directory monitoring process looks at a specific directory for
the creation or revision of any files that fit the naming pattern that it has been configured to look
for.

4.7.6.1.1 Daily Participants Feed - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Daily Participants
Feed interface is based on a bulk file transfer from PEPS to COD system. The EAI development
team uses Data Integrator’s directory monitor service to initiate the file transfer. Data Integrator
has been configured to manage the file transfers and imitate the start of the application process at
different stages (e.g., EAI Bus) of the file transfer. Data Integrator leverages MQSeries to send
large files as MQ messages and load balance the messages over multiple MQSeries queues.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 84

4.7.6.1.2 Daily Participants Feed – Test Scenario Dependencies
To execute the Daily Participants Feed interface test scenario the following dependencies were
met:

- PEPS must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- PEPS must have MQSeries, Data Integrator, and Directory Monitoring running.

- PEPS must place its Daily Participants Feed into an agreed upon source directory for
processing.

- PEPS must make the agreed upon source directory readable for the Utility.

- PEPS must agree upon destination directory outside of the PEPS application space
read/write-able for the Utility to create the Daily Participants Feed.

- PEPS must create a Java Runtime Environment (JRE v. 1.1.7) for the use of the PEPS
MQSeries Utility outside of the PEPS Application.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must accept the Daily Participants Feed file into an agreed upon directory for
processing.

- COD must make the agreed upon directory read/write-able for the Utility.

4.7.6.1.3 Daily Participants Feed - Test Scenario Inputs
This Daily Participants Feed interface transports file via Data Integrator and MQSeries, it flows
from PEPS to the EAI Bus, to COD. The EAI Bus is simply a pass through for the files and, no
transformation is performed. Two types of test data were used in the system integrated test
phase:

1. A test file was created by the EAI team to test the connectivity between the PEPS, EAI
Bus, and COD.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the PEPS to COD interface.

Refer to Appendix I for the detail test conditions.

4.7.6.1.4 Daily Participants Feed – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Daily Participants Feed interface test scenario and
the expected results were received and validated. All actual results matched the expected results.
Refer to Appendix I for the expected results from the test conditions.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 85

4.7.7 COD to SAIG Overview

4.7.7.1 Common Record Schools Interface File
XML based Common Records are transported directly from the COD SAIG mailbox to COD.
Common Record Acknowledgements and Responses from COD to Common Record schools are
written to the SAIG mailbox of the school. Common Records do not require any transformation,
but Common Record Acknowledgements destined for legacy record schools will need
transformation in order for the schools to process the files.

4.7.7.1.1 Common Record Input - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Common Record
Input interface is based on a bulk file transfer from SAIG to COD system. The EAI development
team provided parameters for COD to poll SAIG mailbox that initiates the file transfer. Data
Integrator has been configured to manage the file transfers and imitate the start of the application
process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator leverages
MQSeries to send large files as MQ messages and load balance the messages over multiple
MQSeries queues.

4.7.7.1.2 Common Record Input – Test Scenario Dependencies
To execute the Common Record Input interface test scenario the following dependencies were
met:

- SAIG must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- SAIG must have MQSeries and Data Integrator running.

- SAIG must produce the Common Record Input file and place it into an agreed upon
directory for processing.

- SAIG must make the agreed upon directory read/write-able for the Utility.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the Common Record Input from the
appropriate MQSeries Queue.

4.7.7.1.3 Common Record Input - Test Scenario Inputs
The Common Record Input interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports files via Data Integrator and
MQSeries; it flows from SAIG to the EAI Bus to COD. The EAI Bus is simply a pass through

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 86

for the files and no transformation is performed. Two types of test data were used in the system
integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the SAIG, EAI
Bus, and COD.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the SAIG to COD interface.

Refer to Appendix J for the detail test conditions.

4.7.7.1.4 Common Record Input – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Common Record Input interface test scenario and
the expected results were received and validated. All actual results matched the expected results.
Refer to Appendix J for the expected results from the test conditions.

4.7.7.1.5 Common Record Acknowledgements and Responses - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Common Record
Acknowledgements and Responses interface is based on a bulk file transfer from COD to SAIG
system. The EAI development team provided parameters to Job Control Language (JCL) that
initiates the file transfer. Data Integrator has been configured to manage the file transfers and
imitate the start of the application process at different stages (e.g., EAI Bus) of the file transfer.
Data Integrator leverages MQSeries to send large files as MQ messages and load balance the
messages over multiple MQSeries queues.

4.7.7.1.6 Common Record Acknowledgements and Responses – Test Scenario Dependencies
To execute the Common Record Acknowledgements and Responses interface test scenario the
following dependencies were met:

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must place its Common Record Acknowledgements and Responses into an agreed
upon source directory for processing.

- COD must make the agreed upon source directory readable for the Utility.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- EAI Bus must have Java Runtime Environment and Java transformation code.

- SAIG must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- SAIG must have MQSeries and Data Integrator running.

- SAIG must accept Common Record files into an agreed upon directory for processing.

- SAIG must make the agreed upon directory read/write-able for the Utility.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 87

4.7.7.1.7 Common Record Acknowledgements and Responses - Test Scenario Inputs
The Common Record Input Acknowledgements and Responses interface test scenario includes
three test cycles: 1) Normal 2) Expected Error 3) Unexpected Error. This interface transports
files via Data Integrator and MQSeries; it flows from COD to the EAI Bus to SAIG. The EAI
Bus transforms the files and passes the files. Two types of test data were used in the system
integrated test phase:

1. Common Record Acknowledgement files from COD were transformed and sent to
Common Record schools’ mailbox on SAIG.

2. Common Record Response files from COD were transformed and sent to Common
Record schools’ mailbox on SAIG.

Refer to Appendix J for the detail test conditions.

4.7.7.1.8 Common Record Acknowledgements and Responses – Test Scenario Expected
Results

The Release 3.0 EAI Core team executed this Common Record Acknowledgements and
Responses interface test scenario and the expected results were received and validated. All actual
results matched the expected results. Refer to Appendix J for the expected results from the test
conditions.

4.7.7.2 Legacy Record Schools Interface File
Schools produce the Pell Origination and Disbursement Records in Legacy format. Types of
records transported from COD to SAIG include Pell Acknowledgement Records and Pell
Disbursement Acknowledgement Records. Schools produce the Direct Loan Origination
Record, Direct Loan Origination Change, PLUS Origination, and Direct Loan Disbursement
Records. Responses from COD were written to the SAIG mailbox of the school. Types of
records transported from COD to SAIG include Direct Loan Origination Acknowledgement
Record, Direct Loan Origination Change Acknowledgement Record, PLUS Origination
Acknowledgement Record, MPN/PLUS P-Note Acknowledgement, PLUS Credit Decision,
Booking Notification, Common Records, Promissory Note Acknowledgement, and Direct Loan
Disbursement Acknowledgement Record.

When COD receives a Legacy Record input file directly from SAIG, COD generates a XML
based Common Record acknowledgement for each Legacy Record received. When COD
processes the input file Legacy Record and validates its contents, COD will create a XML based
Common Record response. The EAI BUS will need to transform Common Record
Acknowledgements and Responses to Legacy format for Legacy Record schools before placing
them in the appropriate SAIG mailbox.

4.7.7.2.1 Legacy Record Input - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Legacy Record
Input interface is based on a bulk file transfer from SAIG to COD system. The EAI development
team provided parameters for COD to poll SAIG mailbox that initiates the file transfer. Data
Integrator has been configured to manage the file transfers and imitate the start of the application
process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator leverages
MQSeries to send large files as MQ messages and load balance the messages over multiple
MQSeries queues.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 88

4.7.7.2.2 Legacy Record Input – Test Scenario Dependencies
To execute the Legacy Record Input interface test scenario the following dependencies were met:

- SAIG must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- SAIG must have MQSeries and Data Integrator running.

- SAIG must produce the Legacy Record Input file and place it into an agreed upon
directory for processing.

- SAIG must make the agreed upon directory read/write-able for the Utility.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the Legacy Record Input from the
appropriate MQSeries Queue.

4.7.7.2.3 Legacy Record Input - Test Scenario Inputs
The Legacy Record Input interface test scenario includes three test cycles: 1) Normal 2) Expected
Error 3) Unexpected Error. This interface transports files via Data Integrator and MQSeries; it
flows from SAIG to the EAI Bus to COD. The EAI Bus is simply a pass through for the files and
no transformation is performed. Two types of test data were used in the system integrated test
phase:

1. A test file was created by the EAI team to test the connectivity between the SAIG, EAI
Bus, and COD.

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the SAIG to COD interface.

Refer to Appendix J for the detail test conditions.

4.7.7.2.4 Legacy Record Input – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Legacy Record Input interface test scenario and the
expected results were received and validated. All actual results matched the expected results.
Refer to Appendix J for the expected results from the test conditions.

4.7.7.2.5 Legacy Record Acknowledgements and Responses - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for Legacy Record
Acknowledgements and Responses interface is based on a bulk file transfer from COD to SAIG
system. The EAI development team provided parameters to Job Control Language (JCL) that
initiates the file transfer. Data Integrator has been configured to manage the file transfers and
imitate the start of the application process at different stages (e.g., EAI Bus) of the file transfer.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 89

Data Integrator leverages MQSeries to send large files as MQ messages and load balance the
messages over multiple MQSeries queues.

4.7.7.2.6 Legacy Record Acknowledgements and Responses – Test Scenario Dependencies
To execute the Legacy Record Input interface test scenario the following dependencies were met:

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must place its Common Record Acknowledgements and Responses into an agreed
upon source directory for processing.

- COD must make the agreed upon source directory readable for the Utility.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- EAI Bus must have Java Runtime Environment and Java transformation code.

- SAIG must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- SAIG must have MQSeries and Data Integrator running.

- SAIG must accept Legacy Record files into an agreed upon directory for processing.

- SAIG must make the agreed upon directory read/write-able for the Utility.

4.7.7.2.7 Legacy Record Acknowledgements and Responses - Test Scenario Inputs
The Legacy Record Acknowledgements and Responses interface test scenario includes three test
cycles: 1) Normal 2) Expected Error 3) Unexpected Error. This interface transports files via Data
Integrator and MQSeries; it flows from COD to the EAI Bus to SAIG. The EAI Bus transforms
the files and passes the files. Two types of test data were used in the system integrated test phase:

1. Common Record Acknowledgement files from COD were transformed and sent to
Legacy Record schools’ mailbox on SAIG.

2. Common Record Response files from COD were transformed and sent to Legacy Record
schools’ mailbox on SAIG.

Refer to Appendix J for the detail test conditions.

4.7.7.2.8 Legacy Record Acknowledgements and Responses – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this Legacy Record Acknowledgements and Responses
interface test scenario and the expected results were received and validated. All actual results
matched the expected results. Refer to Appendix J for the expected results from the test
conditions.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 90

4.7.7.2.9 School Destination Information Feed
The Participant Management System provides destination and mailbox data for COD. This will
replace the Institution, Destination, and Participation File currently sent from TIVWAN.

4.7.7.2.10 School Destination Information Feed - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for School Destination
Information Feed interface is based on a bulk file transfer from SAIG to COD system. The EAI
development team provided parameters for COD to poll SAIG mailbox that initiates the file
transfer. Data Integrator has been configured to manage the file transfers and imitate the start of
the application process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator
leverages MQSeries to send large files as MQ messages and load balance the messages over
multiple MQSeries queues.

4.7.7.2.11 School Destination Information Feed – Test Scenario Dependencies
To execute the School Destination Information Feed interface test scenario the following
dependencies were met:

- SAIG must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- SAIG must have MQSeries and Data Integrator running.

- SAIG must produce the School Destination Information Feed file and place it into an
agreed upon directory for processing.

- SAIG must make the agreed upon directory read/write-able for the Utility.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must have MQSeries running.

- COD must place components necessary to retrieve the School Destination Information
Feed from the appropriate MQSeries Queue.

4.7.7.2.12 School Destination Information Feed - Test Scenario Inputs
The School Destination Information Feed interface test scenario includes three test cycles: 1)
Normal 2) Expected Error 3) Unexpected Error. This interface transports files via Data Integrator
and MQSeries; it flows from SAIG to the EAI Bus to COD. The EAI Bus is simply a pass
through for the files and no transformation is performed. Two types of test data were used in the
system integrated test phase:

1. A test file was created by the EAI team to test the connectivity between the SAIG, EAI
Bus, and COD.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 91

2. Test files (with estimated production size data) were used by the application and EAI
team to test the volume and the load through the SAIG to COD interface.

Refer to Appendix J for the detail test conditions.

4.7.7.2.13 School Destination Information Feed – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this School Destination Information Feed interface test
scenario and the expected results were received and validated. All actual results matched the
expected results. Refer to Appendix J for the expected results from the test conditions.

4.7.7.3 COD to Schools/SAIG Reports
COD produces reports when requested by the schools via the web interface. These reports will be
delivered to the schools’ SAIG mailbox. The reports include Electronic Summary of Account
(ESOA), Multiple Reporting Records, Year-to-date Disbursements, Loan Servicer Refunds,
Rebuild Data File, Text Messages, Reconciliation, Certification Warning Requirement,
Anticipated Disbursement Listing, Actual Disbursement Roster, Inactive Loans Report,
SSN/Name/DOB Change Report, Loan Data Matching Exception Report, Duplicate Student
Borrower Report, Disbursement activity Not Yet Booked at Servicing, Direct Loan COD Combo
Report.

4.7.7.3.1 COD to Schools/SAIG Reports - Test Scenario Description
The EAI Core Architecture test scenario to validate the EAI infrastructure for COD to
Schools/SAIG Reports interface is based on a bulk file transfer from COD to SAIG system. The
EAI development team provided parameters to Job Control Language (JCL) that initiates the file
transfer. Data Integrator has been configured to manage the file transfers and imitate the start of
the application process at different stages (e.g., EAI Bus) of the file transfer. Data Integrator
leverages MQSeries to send large files as MQ messages and load balance the messages over
multiple MQSeries queues.

4.7.7.3.2 COD to Schools/SAIG Reports – Test Scenario Dependencies
To execute the COD to Schools/SAIG Reports interface test scenario the following dependencies
were met:

- COD must have IBM MQSeries v2.1 and Commerce Quest Data Integrator v4.0.1
installed.

- COD must have MQSeries and Data Integrator running.

- COD must place its COD to Schools/SAIG Reports into an agreed upon source directory
for processing.

- COD must make the agreed upon source directory readable for the Utility.

- EAI Bus must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

- EAI Bus must have MQSeries and Data Integrator running.

- EAI Bus must have Java Runtime Environment and Java transformation code.

- SAIG must have IBM MQSeries v5.2 and Commerce Quest Data Integrator v4.0.1
installed.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 92

- SAIG must have MQSeries and Data Integrator running.

- SAIG must accept COD to Schools/SAIG Reports files into an agreed upon directory for
processing.

- SAIG must make the agreed upon directory read/write-able for the Utility.

4.7.7.3.3 COD to Schools/SAIG Reports - Test Scenario Inputs
The COD to Schools/SAIG Reports interface test scenario includes three test cycles: 1) Normal 2)
Expected Error 3) Unexpected Error. This interface transports files via Data Integrator and
MQSeries; it flows from COD to the EAI Bus to SAIG. The EAI Bus transforms the files and
passes the files. One type of test data was used in the system integrated test phase:

1. COD to Schools/SAIG Reports files were transformed and sent to schools’ mailbox on
SAIG.

Refer to Appendix J for the detail test conditions.

4.7.7.3.4 COD to Schools/SAIG Reports – Test Scenario Expected Results
The Release 3.0 EAI Core team executed this COD to Schools/SAIG Reports interface test
scenario and the expected results were received and validated. All actual results matched the
expected results. Refer to Appendix J for the expected results from the test conditions.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 93

5 SOURCE CODE FOR NEW ADAPTERS

Due to the large volume of source code, EAI is not including source code in this deliverable.
Source code does exist and is available upon request. Please contact
Patrick.E.Volpe@accenture.com for source code.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
FSA MODERNIZATION PARTNER

EAI CORE BUILD AND TEST REPORT

SECTION 3: EAI COMPONENT TOOLS

9/6/02 80.1.3 94

6 APPENDICES

Appendix A - A Road Map between Work and Deliverables

Appendix B – FPDM Assembly Test Conditions.xls

Appendix C – eCB Assembly Test Conditions.xls

Appendix D – CPS Assembly Test Conditions.xls

Appendix E – DLOS Assembly Test Conditions.xls

Appendix F – DLSS Assembly Test Conditions.xls

Appendix G – FMS Assembly Test Conditions.xls

Appendix H – NSLDS Assembly Test Conditions.xls

Appendix I – PEPS Assembly Test Conditions.xls

Appendix J – SAIG Assembly Test Conditions.xls

Appendix K – Common Logging Test Conditions.xls

Appendix L – Timeline.ppt

